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a b s t r a c t

This paper deals with formation control problems for multi-agent systems with nonlinear dynamics and
switching network topologies. Using the nearest neighbor knowledge, a distributed algorithm is con-
structed by employing the iterative learning control approach. Sufficient conditions are given to obtain the
desired relative formations of agents, which benefits from the strict positiveness of products of stochas-
tic matrices. It is shown that the derived results can effectively work, although the network topologies
dynamically change along both time and iteration axes and the corresponding directed graphs may not
have spanning trees. Such result is also illustrated via numerical simulations.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-agent systems usually consist of a group of agents coop-
erating to complete certain tasks for the group, and their coordi-
nation control has generated considerable research interest (see,
e.g., Jadbabaie, Lin, & Morse, 2003; Moreau, 2005; Nedic, Ol-
shevsky, Ozdaglar, & Tsitsiklis, 2009; Olfati-Saber & Murray, 2004;
Olshevsky & Tsitsiklis, 2009; Ren & Beard, 2005; Schenato &
Fiorentin, 2011). These results contribute greatly to achieving coor-
dination control objectives as time goes to infinity, especially in the
casewhen the time-varying communication graphs are explored to
describe the switching network topologies ofmulti-agent systems.
In addition, there exists a class of practical coordination tasks that
are required to be performed as accurately as possible over a fi-
nite time horizon, such as the formation of mobile robots in Chen
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and Jia (2010) and trajectory-keeping of flying satellites in Ahn,
Moore, and Chen (2010). This class of coordination tasks may not
be well accomplished by traditional or conventional multi-agent
approaches in the literature, which motivates some recent stud-
ies on applying iterative learning control (ILC) approaches to deal
with them, such as relative formation (Ahn & Chen, 2009; Liu & Jia,
2012; Xu, Zhang, & Yang, 2011) and consensus tracking (Meng &
Jia, 2012; Meng, Jia, Du, & Yu, 2012, 2013). It has been shown that
the coordination tasks with the high precision requirement can be
well carried out for multi-agent systems through an ILC process.
This is also the motivation of the present paper that is devoted to
the combined studies of ILC andmulti-agent approaches on the for-
mation control issues for multiple agents with nonlinear dynamics
and switching topologies dynamically changing along both time
and iteration axes.

It is worth pointing out that the existing results of multi-agent
ILC require the fixed network topology except that of Liu and Jia
(2012) which, however, requires all the switching graphs to have
spanning trees at all time and all iterations. In contrast to this, our
paper aims to relax such requirements on the formation learning
control of nonlinear multi-agent systems with switching topolo-
gies. We propose an ILC algorithm using the nearest neighbor rule
and develop properties of stochastic matrices to give a relaxed
convergence condition. This condition can allow even none of the
switching graphs to have spanning trees and ensure the learning

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.11.009

http://dx.doi.org/10.1016/j.automatica.2013.11.009
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2013.11.009&domain=pdf
mailto:dymeng23@126.com
mailto:ymjia@buaa.edu.cn
mailto:junpingdu@126.com
mailto:buaazhangjun@vip.sina.com
http://dx.doi.org/10.1016/j.automatica.2013.11.009


292 D. Meng et al. / Automatica 50 (2014) 291–295

process with an exponential convergence speed, which takes
advantage of the connected property of switching graphs (see,
e.g., Jadbabaie et al., 2003; Moreau, 2005; Nedic et al., 2009; Olfati-
Saber & Murray, 2004; Schenato & Fiorentin, 2011). We also illus-
trate this result by numerical simulations.

Notations: In = {1, 2, . . . , n}, ZN = {0, 1, . . . ,N}, 1n = [1, 1,
. . . , 1]T ∈ Rn, ∥A∥∞ is themaximum row sum norm (respectively,
the l∞ norm) of a matrix (respectively, a vector) A, A > 0 (respec-
tively, A ≥ 0) if its elements are all positive (respectively, nonneg-
ative), and A◦B is the Hadamard product of A and B. A nonnegative
matrix A ∈ Rn×n is said to be stochastic if A satisfies A1n = 1n.

Preliminaries in graph theory: let G = (V (G ), E (G )) be an nth
order directed graph, where V (G ) , V = {vi : i ∈ In} is the
vertex set, and E (G ) , E ⊆ {(vi, vj) : vi, vj ∈ V } is the edge set.
An edge (vj, vi) corresponds to a channel where information flows
from vj to vi. The index set of the neighbors of vi is denoted byNi =

{j : (vj, vi) ∈ E }. A path in G is a finite sequence vi1 , vi2 , . . . , vij
of vertices such that (vil+1 , vil) ∈ E for l = 1, 2, . . . , j − 1. If there
exists a special vertex that can be connected to all the other ver-
tices through paths, G is said to have a spanning tree. If there exists
a path between any distinct pair of vertices, G is said to be strongly
connected. For G1 = (V , E1) and G2 = (V , E2), G = G1


G2 is

called the union of G1 and G2, where E = E1


E2. A nonnegative
weighted adjacency matrix A = [aij] ∈ Rn×n associated with G is
defined tomodel the information exchange between agents,where
aij > 0 ⇔ (vj, vi) ∈ E and aij = 0 otherwise. Here, we assume
aii = 0 for i ∈ In. The Laplacian matrix of G is defined as LA =

∆A − A , where ∆A = diag


j∈N1
a1j,


j∈N2

a2j, . . . ,


j∈Nn

anj

. The extended directed graph of G with all n self-loops is de-

noted by G sl
= (V (G sl), E (G sl)), where V (G sl) = V and E (G sl) =

E


{(i, i), ∀i ∈ In}. A stochastic matrix S = [Sij] ∈ Rn×n is said to
be associated with G sl if Sij > 0 ⇔ (vj, vi) ∈ E (G sl) for all i, j ∈ In.
Clearly, a stochastic matrix associated with G sl must have positive
diagonal elements.

2. Problem description

We consider networked systems that consist of nmobile agents
labeled 1 through n, where all agents share a common state space
R. Let t be the time variable taking values from a finite interval ZN .
The ith agent is considered to have the following dynamics over
t ∈ ZN :

xi(t + 1) = fi (xi(t)) + ui(t), i ∈ In (1)

where xi(t) is the state, ui(t) is the protocol, and fi(·) is a continu-
ously differentiable nonlinear function with range in R and its dif-
ferential is uniformly bounded, i.e., |dfi(x)/dx| ≤ bfi holds with a
finite bound 0 ≤ bfi < ∞ for x ∈ R.

Let k ∈ Z+ denote the iteration index (independent of t). At the
kth iteration, the state and protocol of (1) are denoted by xi,k(t)
and ui,k(t), respectively. Then by taking the iterative process into
account, the dynamics of the ith agent given in (1) are rewritten as

xi,k(t + 1) = fi

xi,k(t)


+ ui,k(t), i ∈ In (2)

where the state xi,k(t) satisfies the initial resetting condition:
xi,k(0) = xi0 for k ∈ Z+. For the agents given by (2), we consider
their communication associatedwith a directed graph dynamically
changing with respect to both t and k, which is denoted by Gk(t).
Let every agent be regarded as a vertex in Gk(t). Consequently, ev-
ery edge (vj, vi) ∈ E (Gk(t)) corresponds to an available informa-
tion channel from the agent vj to the agent vi at the time step t and
iteration k. The weighted adjacency matrix associated with Gk(t)
depends on both t and k, which is denoted by Ak(t) =


aij,k(t)


.

Thus, the extended directed graph of Gk(t)with all self-loops is de-
noted by G sl

k (t), and the Laplacian matrix and the neighbor index

set of the ith agent associated with Ak(t) are denoted by LAk(t)

and Ni,k(t), respectively. In addition, let G s = {Gs1 , Gs2 , . . . , Gsν }
be the set of all directed graphs that are defined for the agents, i.e.,
Gk(t) ∈ G s for all t and k.

For two agents vi and vj, we denote xij,k(t) = xi,k(t) − xj,k(t) as
the relative formation between them. Let dij(t) be the desired rel-
ative formation between the two agents vi and vj over t ∈ ZN . The
problem considered in this paper is to make the multi-agent sys-
tem (2) achieve the desired relative formation, i.e., for ∀i, j ∈ In,
lim
k→∞

xij,k(t) = dij(t), t ∈ [1,N]. (3)

Note that dij(t) can be given in the form of dij(t) = di(t) − dj(t),
where di(t) is the desired state deviation trajectory of the agent vi
to an unknown common reference or leader agent for the multi-
agent system (see, e.g., Liu & Jia, 2012; Meng et al., 2012, 2013). To
achieve the objective (3) based on the nearest neighbor informa-
tion, we use the iterative rules to construct a formation algorithm
as
ui,k+1(t) = ui,k(t) +


j∈Ni,k(t)

φij,k(t)aij,k(t)

×

dij(t + 1) − xij,k(t + 1)


, i ∈ In (4)

where ui,0(t) is the initial input, and φij,k(t) ≥ 0 is the nonnegative
learning gain. Let Φk(t) =


φij,k(t)


∈ Rn×n, and thus Φk(t) ≥ 0.

As shown in Meng and Jia (2012) and Meng et al. (2012), such a
gain matrix is always selected such that

φij,k(t)

> 0, j ∈ Ni,k(t)
= 0, otherwise

which guarantees that Φk(t) ◦ Ak(t) ≥ 0 can be an adjacency ma-
trix associated with Gk(t). Since Gk(t) ∈ G s, it is natural to consider
that Φk(t) takes its values from a set with finite elements in accor-
dance with Gk(t), i.e., Φk(t) ∈ Φs , {Φs1 , Φs2 , . . . , Φsν }.

Remark 1. It is worth pointing out that the construction of (4)
takes into account the relative degree of the agents’ plant. From
(1) or (2), it can be found that we consider the plant with relative
degree one for the agents (i.e., there is one step of time delay in
the state of every agent, in order to have the corresponding control
input appearing). This fact motivates us to apply the state informa-
tion at the time step t + 1 (i.e., xij,k(t + 1)) to develop the updated
protocol at the time step t (i.e., ui,k+1(t)) in the formation learning
algorithm (4). But, it isworth noting that the information xij,k(t+1)
is from the iteration k and, thus, availablewhen computing the pro-
tocol ui,k+1(t) for the agents to operate at the next iteration k + 1.
Actually, this reflects one of the typical design methods for ILC of
the discrete-time plants with relative degree one (see, e.g., the ILC
survey Ahn, Chen, & Moore, 2007 for more details).

3. Main results

Let ei,k(t) = di(t)−xi,k(t) denote the state deviation error of vi.
It can be seen that the objective (3) holds if there exists a function
c(t) ∈ R such that limk→∞ ek(t + 1) = c(t)1n for t ∈ ZN−1, where
ek(t) =


e1,k(t), e2,k(t), . . . , en,k(t)

T. We will thus consider how
to dealwith this convergence problem instead in our following dis-
cussions. Toward this end, we introduce an auxiliary variable as
ηi,k(t) = xi,k+1(t) − xi,k(t), and then denote ηk(t) =


η1,k(t),

η2,k(t), . . . , ηn,k(t)
T
.

By combining (2) and (4), we can derive
ηi,k(t + 1) =


fi

xi,k+1(t)


− fi


xi,k(t)


+


ui,k+1(t) − ui,k(t)


=


fi

xi,k+1(t)


− fi


xi,k(t)


+


j∈Ni,k(t)

φij,k(t)

× aij,k(t)

ei,k(t + 1) − ej,k(t + 1)


. (5)
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