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a b s t r a c t

Given a positive definite matrix M and an integer Nm ≥ 1, Oja’s subspace algorithm will provide conver-
gent estimates of the firstNm eigenvalues ofM alongwith the corresponding eigenvectors. It is a common
approach to principal component analysis. This paper introduces a normalized stochastic-approximation
implementation of Oja’s subspace algorithm, as well as new applications to the spectral decomposition
of a reversible Markov chain. Recall that this means that the stationary distribution satisfies the detailed
balance equations (Meyn & Tweedie, 2009). Equivalently, the statistics of the process in steady state do
not changewhen time is reversed. Stability and convergence of Oja’s algorithm are established under con-
ditions far milder than that assumed in previous work. Applications to graph clustering, Markov spectral
decomposition, and multiplicative ergodic theory are surveyed, along with numerical results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Spectral decomposition is a classical approach to model
reduction for systems that are complex due to dimension or
randomness. This technique is known as principal component
analysis or the Karhunen–Loève decomposition, depending on
the context (Hyvärinen, 1999; Jolliffe, 2002; Loève, 1978). The
same technique has been developed more recently for network
decomposition (Nadler, Lafon, Coifman, & Kevrekidis, 2006;
Schölkopf, Smola, &Müller, 1998;Weiss, 1999),which in particular
provides an appealing alternative to the min-cut max-flow
theorem.
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Given a symmetric N × N matrix w, its spectral decomposition
amounts to the computation of its N real eigenvalues and corre-
sponding eigenvectors. In the Karhunen–Loève decomposition the
matrix w is a covariance matrix, and the decomposition leads to
a representation of a stationary process as a moving-average of
white noise. In the graph clustering problem the elements of this
matrix represent positive edge weights: wij = wji is the weight
of the link connecting nodes i and j. The first decomposition of a
connected graph is obtained by computation of the eigenvector
corresponding to the second eigenvalue. It can be shown that the
eigenvector possesses positive and negative entries, and this sign
structure is used to define a generalized network cut inNadler et al.
(2006), Schölkopf et al. (1998) and Weiss (1999).

Oja’s subspace algorithm is an approach to computation of the
leading eigenvalues and eigenvectors of the matrix w (Chen, Hua,
& Yan, 1998; Oja, 1982; Sikora & Skarbek, 2009). Fix an integer
Nm ≤ N , and let m(t) denote an N × Nm matrix whose columns
are intended to approximate an Nm-dimensional eigenspace cor-
responding to the Nm largest of the N eigenvalues of w. A deter-
ministic version of Oja’s algorithm is expressed as the polynomial
differential equation:

d
dt

m(t) = [I − m(t)mT (t)]wm(t), (1)
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where m(0) is given as the initial condition. If the matrix w is
positive definite then the analysis of Chen et al. (1998) establishes
convergence ofm for almost every initial conditions.

This paper introduces a normalized implementation of Oja’s
algorithm that is also a multidimensional generalization of the
one-dimensional algorithmofKrasulina (Krasulina, 1970). Stability
and convergence of the normalized algorithm are established
under conditions far milder than that assumed in previous work.
Applications to graph clustering, as well as new applications to the
spectral decomposition of a reversible Markov chain are surveyed.

In the following section, we introduce the stochastic approxi-
mation algorithm, and present the main result establishing con-
vergence of the algorithm. Applications to spectral graph theory
are surveyed in Section 3, and Section 4 contains extensions of the
algorithm to compute the spectrum of a reversible Markov chain.
Section 5 shows connections to multiplicative ergodic theory and
risk-sensitive control where the interest is in the top eigenvalue
and eigenvector. Examples are contained in Section 6, and conclu-
sions may be found in Section 7.

2. Stochastic approximation and Oja’s algorithm

Oja’s 1985 paper (Oja &Karhunen, 1985) introduces a stochastic
approximation algorithm based on the o.d.e. (1). Suppose that
X is an Rn-valued stationary process with covariance matrix
w = E[X(t)X(t)T]. We can express Oja’s stochastic approximation
algorithm as the matrix recursion:

M(n + 1) − M(n) = a(n)

I − M(n)MT(n)

W (n)M(n), (2)

where W (n) = X(n)XT(n), and a(n) is a decreasing parameter—the
step-size for the algorithm (Borkar, 2008b). Specific assumptions
will be imposed later. Almost sure convergence to the appropriate
dimensional dominant eigenspace was established by applying
stochastic approximation techniques that were available at the
time. These techniques require Lipschitz continuity of the right
hand side of the recursion in the variable M(n), which is violated
in this recursion. This issue is addressed in Oja and Karhunen
(1985) and in Sikora and Skarbek (2009), by imposing additional
conditions on X .

The lack of Lipschitz continuity presents problems even in
deterministic approximations of (1) in discrete time. One such
algorithm is introduced in Yi, Ye, Lv, and Tan (2005) through
sampling the o.d.e. to obtain the deterministic recursion,

m(n + 1) − m(n) = a(n)

I − m(n)mT (n)


wm(n). (3)

While convergence is established for the deterministic algorithm,
the proof is complex. Complexity is due in large part to the cubic
nonlinearity seen here just as in the stochastic approximation
algorithm.

To obtain an algorithm that satisfies the Lipschitz continuity
and thereby place the algorithm within the framework of
Borkar (2008a,b) and Borkar and Meyn (2000) we introduce a
normalization. The normalized o.d.e. is given by

d
dt

m(t) = a(t)

I − m(t)mT (t)


wm(t),

a(t) = [1 + trace (m(t)m(t)T)]−1.

(4)

The right hand side of the differential equation is Lipschitz in the
variable m(t). Solutions to this differential equation are simply
time-scaled versions of the solutions to (1). In particular, from each
initial condition the set of limit points are identical.

The stochastic approximation algorithm considered in this
paper is again of the form (2) in which the gain sequence

is modified as in the o.d.e. (4), with an additional scaling as
follows:

a(n) = b(n)(1 + trace (M(n)M(n)T))−1. (5)

It is assumed throughout that the following assumptions hold for
the sequence b = {b(n) : n ≥ 0}. It is non-negative, with

∞
n=0

b(n) = ∞,

∞
n=0

b(n)2 < ∞,

sup
n≥0



k≥n

b(k)2

b(n)

 < ∞.

(6)

An example is b(n) = (1 + n)−1, n ≥ 0.
Under these conditions the algorithm is stable. To guarantee

consistency we modify the algorithm slightly through the intro-
duction of white noise:

M(n + 1) − M(n) = a(n)

I − M(n)MT(n)


× W (n)M(n) + ξ(n + 1)


, (7)

where ξ is an i.i.d. N(0, I) sequence. Proposition 2.1 states that
this recursion shares the best possible convergence properties
observed in the o.d.e. (1). While the deterministic algorithm can
become trapped in an arbitrary eigenspace of w, the stochastic
algorithm (7) is strongly consistent from each initial condition.

While the above result is stated for i.i.d. X , Proposition 2.1
extends to ergodic Markov X as well, see, e.g., Corollary 8 and
Theorem 9, p. 74–75, of Borkar (2008b).

Proposition 2.1. Consider the algorithms (2) or (7), where a is given
in (5), and with b satisfying the conditions in (6). Suppose that the
process X is i.i.d., with covariance w > 0, and that it is independent
of the i.i.d. N(0, I) sequence ξ.

Then, the following conclusions hold for each initial M(0):

(i) Stability: For either of the algorithms (2) or (7),

lim sup
n→∞

∥M(n)∥ < ∞ a.s.

(ii) Convergence: For the algorithm (7), with probability one, any
limit point M(∞) of the sequence ofmatrices {M(n)} has columns
that lie in the eigenspace spanned by the first m eigenvalues of w.

Proof. First we establish that the solutions to either stochastic
approximation recursion are bounded a.s. by applying Theorem
7 of Borkar (2008b, Chapter 3) (see also Borkar & Meyn, 2000).
This result constructs an ‘‘o.d.e. at infinity’’ that approximates the
behavior of the recursion for large initial conditions. Based on the
recursion (2) or (7) we obtain the o.d.e.,

d
dt

m∞(t) = −


m∞(t)m∞T (t)

trace (m∞(t)m∞(t)T)


wm∞(t), (8)

wherem∞(0) ∈ RN×Nm is given as initial condition. Define the real
valued function V :RN×Nm → R+ as the quadratic:

V (m) := trace (mTwm), m ∈ RN×Nm .

Under the positivity assumption on w this function vanishes only
when m is identically zero. This property combined with the
following drift condition implies that V serves as a Lyapunov
function:

d
dt

V (m∞(t)) = −2


trace ([m∞T (t)wm∞(t)]2)

trace (m∞(t)m∞(t)T)


< 0,
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