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a b s t r a c t

This technical communique introduces a new concept of set invariance with respect to linear discrete
time dynamics affected by delay. We are interested in the definition and characterization of sequences
of cyclically invariant subsets in the state space. The algebraic conditions established in the late ’80s for
linear dynamics are generalized to invariance analysis in the presence of delays for given sequences of
polyhedral sets.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The present paper concentrates on the set invariance of
polyhedral sets with respect to discrete time dynamical systems
affected by delay. It is known that set invariance in the original
state space can lead to conservative definitions through its delay-
independent characteristic (Hennet & Tarbouriech, 1998; Vassilaki
& Bitsoris, 1999), while the augmented state space can lead to
less conservative but complex constructions (Gielen, Lazar, &
Kolmanovsky, 2010; Lombardi, Olaru, Lazar, & Niculescu, 2011).
The importance of conservatism in relation to the computational
complexity can be measured through the use of set invariance
in the control design. The receding horizon control of time-delay
systems (Gielen & Lazar, 2011) and the fault-tolerant control
of multi-sensor systems (Stankovic, Stoican, Olaru, & Niculescu,
2012) are two examples in this sense. As a contribution, we
propose a novel concept of cyclic invariance, defined in the current
and retarded states concomitantly, with the particularity that
the sets need not be identical throughout the delay interval
as long as the cyclic inclusion is respected. This leads to a
delay-dependent construction which covers the existing delay-
independent versions and thus obeys the existence conditions
defined in such cases (Lombardi et al., 2011), all by relaxing them.
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Qian under the direction of Editor André L. Tits.
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Although the cyclic invariance definition is based on Minkowski
algebra over the sets, the invariance test can be reduced to an LP
(linear programming) feasibility problem (like the classical results
for the LTI case in Bitsoris (1988)). Using the same principles, we
focus on the possible extensions for additive disturbances and
linear feedback design problems.

2. Problem formulation and motivation

Consider a delay–difference equation of the form

x(k + 1) =

d
i=0

Aix(k − i), (1)

where x(k) ∈ Rn is the state vector at the time instant k ∈ Z+.
Ai ∈ Rn×n for i ∈ Z[0,d] and the initial conditions are given by a se-
quence x(−i) ∈ Rn, i ∈ Z[0,d]. The stability and positive invariance
can be studied for the delay–difference equation (1) by considering
the equivalent autonomous discrete time system

x(k + 1) = Φx(k), (2)

where x(k) =

x(k)T x(k − 1)T . . . x(k − d)T

T is a vector in
(Rn)d+1 and the transition matrix is defined as

Φ =


A0 A1 · · · Ad−1 Ad
In 0 · · · 0 0
0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

 . (3)
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The stability of the linear system (2) and the invariant (λ-contrac-
tive) set constructions suffer from the complexity point of view, the
dimension of the extended state space — (Rn)d+1 — being directly
related to the size of the delay — d. We are interested in preserving
the analysis of the stability and invariance properties in the original
state space Rn for the dynamical system (1).

Definition 2.1 (D-contractiveness, D-invariance). Let λ ∈ R[0,1]. A
set P ⊂ Rn containing the origin is called λ–D-contractive with
respect to (1) if1

d
i=0

AiP ⊆ λP . (4)

When λ = 1, P is said to be a D-invariant set. �

These definitions of D-invariance and D-contractiveness charac-
terizing the behaviour of time-delay systems have to be under-
stood as the set invariance (and contractiveness) concomitantly in
the current and delayed states (each being part of Rn). The notion
of D-invariance inherits structural conservativeness with respect
to the invariant sets corresponding to the extended system (2). The
existence of a D-invariant set P ⊂ Rn with respect to (1) implies
the invariance of the set P d+1

⊂ (Rn)d+1 with respect to (2), but
the existence of a non-degenerate invariant set in (Rn)d+1 with
respect to (2) does not necessarily imply the existence of a non-
degenerate D-invariant set P ≠ {0} in Rn with respect to (1). For
convex sets it is interesting to examine whether the D-invariance
holds when operations that preserve convexity (like intersection or
convex hull) are used. The following result gives an affirmative an-
swer for the intersection of D-invariant sets.

Lemma 2.2. If the sets Pi ⊆ Rn for i ∈ Z[0,d] are D-invariant with
respect to the dynamics (1), then

d
i=0 Pi is a D-invariant set for the

same dynamical system.

3. Cyclic D-invariance/contractiveness

A less conservative invariant structure can be obtained by
circular shift of a sequence of ‘‘d’’ convex sets (or in a general case
of a sequence of q sets, with q a positive, finite integer). Each one-
step circular shift in the sequence brings the previous last set into
the first position. Mathematically this insertion in the first position
will be allowed by the inclusion properties, as summarized by the
next definition.

Definition 3.1 (Cyclic D-invariance). The sequence of sets {P0,
. . . , Pd} with 0 ∈ Pi ⊆ Rn is called cyclically D-invariant with
respect to (1) if:

A0P0 ⊕ A1P1 ⊕ · · · ⊕ AdPd ⊆ Pd;

A0Pd ⊕ A1P0 ⊕ · · · ⊕ AdPd−1 ⊆ Pd−1;

...

A0P1 ⊕ A1P2 ⊕ · · · ⊕ AdP0 ⊆ P0. �

(5)

After d shifts, the sequence comes back to the initial order and
thus provides a time-independent formulation of the invariance
concept.

Consider the polyhedral sets Pi ⊆ Rn, for i ∈ Z[0,d], containing
the origin in their interior, and defined by the relations

Pi = {x ∈ Rn
| Fix ≤ 1}, (6)

1 A ⊕ B := {x + y | x ∈ A, y ∈ B} defines the Minkowski sum of two sets.

where Fi ∈ Rr×n. For establishing algebraic conditions of cyclic
invariance of the sequence {P0, . . . , Pd} we define the following
matrices:

Ψ = diag(F0, . . . , Fd); Θ = diag(A0, . . . , Ad) (7)
Γi =


Fi Fi . . . Fi

  
d+1

, i ∈ Z[0,d]

and the permutation matrix

Π =


0 0 . . . In

In 0
. . .

...
...

. . .
. . . 0

0 . . . In 0

 ∈ R(n(d+1))×(n(d+1)).

Theorem 3.2. The sequence {P0, . . . , Pd} of polyhedral sets Pi is
cyclically D-invariant with respect to (1) if and only if there exist
matrices Ωi ∈ Rr×r(d+1), i ∈ Z[0,d] with non-negative elements and
∥Ωi∥∞ ≤ 1 such that ΩiΨ Π i

= ΓiΘ .

Proof. The series of d + 1 inclusions defining the D-invariance in
(5) can be rewritten explicitly using the half-space representation
of the sets Pi in (6) and the permutation matrix

Ψ Π ix ≤ 1 H⇒ ΓiΘx ≤ 1, ∀i ∈ Z[0,d]. (8)

By virtue of the Extended Farkas Lemma, relation (8) is equivalent
to the existence of matrices Ωi with non-negative elements
satisfying

ΩiΨ Π i
= ΓiΘ and Ωi1 ≤ 1. (9)

Taking into account the elementwise non-negativeness of the
matrices Ωi, the second inequality can be interpreted in terms of
the matrix norm as ∥Ωi∥∞ ≤ 1. �

Remark 3.3. Theorem 3.2 establishes conditions for the cyclic
D-invariance for a sequence of sets of length d+ 1 with respect to
the difference equation (1) affected by a delay d. Similar conditions
can be established for cyclic D-invariance of a sequence of sets
{P0, . . . , Pq} with q ≠ d as long as a series of max(d + 1, q + 1)
shifted set inclusions similar to those of (5) are verified. For
simplicity of notation, the convention of a cyclic sequence of length
d + 1 is preserved throughout the rest of the paper.

4. Discussion and related facts

4.1. Cyclic D-invariance versus D-invariance

In order to link the basic D-invariance property to the newly
introduced cyclic D-invariance, one can observe that for any
D-invariant set, there exists a trivial cyclically D-invariant se-
quence {P, . . . , P  

d+1 times

}. The next result points toward the converse

relationship, which can be summarized as: ‘‘cyclic D-invariance
induces D-invariance’’.

Theorem 4.1. Consider the polyhedral sets Pi ⊆ Rn, for i ∈ Z[0,d],
containing the origin in their interior. If the sequence {P0, . . . , Pd} is
cyclically D-invariant with respect to (1) then the intersection

I =

d
i=0

Pi (10)

is D-invariant.
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