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a b s t r a c t

This paper is concerned with model-based isolation and estimation of additive faults in discrete-time
linear Gaussian systems. The isolation problem is stated as a multiple composite hypothesis testing
on the innovation sequence of the Kalman filter (KF) that considers the system operating under fault-
free conditions. Fault estimation is carried out, after isolating a fault mode, by using the Maximum a
Posteriori (MAP) criterion. An explicit solution is presented for both fault isolation and estimation when
the parameters of the fault modes are assumed to be realizations of specific random variables (RV).

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The Generalized Likelihood Ratio Test (GLRT) proposed by
Willsky and Jones (1976) will be adopted here as the starting point
for the development of a newmethod for fault diagnosis. It consists
of a statistical test performed on the innovation sequence of the
Kalman filter (KF) that assumes there exists no fault in the system.
This method does not assume any prior knowledge about the fault
parameters.

This paper is concerned with diagnosis (isolation and estima-
tion) of additive faults in discrete-time linear systems excited by
Gaussian noise. The innovation sequence of the KF is used as a
residual signal. The isolation problem is stated as a multiple com-
posite hypothesis testing, for which an approximated Bayesian
solution is proposed. After isolating a fault mode, the fault param-
eters are estimated by means of the Maximum a Posteriori (MAP)
criterion. Unlike the approaches available in the literature, the pro-
posed method does not require estimation of the fault parameters
prior to the fault isolation. This is achieved by assuming that the
fault instant is a realization of a discrete uniform RV and the fault
magnitude is a realization of a gamma RV.
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recommended for publication in revised form by Associate Editor Fabrizio Dabbene
under the direction of Editor Roberto Tempo.
∗ Corresponding author. Tel.: +55 12 3947 5900; fax: +55 12 3947 5967.
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1.1. Notation

Let R and Z+ denote the set of real numbers and the set of
non-negative integers, respectively. The vector ak ∈ Rn, for some
n ∈ Z+, is a quantity referring to the discrete-time instant tk.
Infinite sequences are denoted as {ak} , a0, a1, a2, . . . , while finite
sequences are denoted as ak1:k2 , ∀k1, k2 ∈ Z+, k1 < k2. ej ∈ Rn, for
some n ∈ Z+, is a vector whose jth component is 1 and the others
are 0. The function 1k,kf equals 1, ∀k ≥ kf and equals 0 otherwise.
δ(k) denotes the Dirac delta function. U([l1, l2]) denotes a discrete
uniform distribution whose support is the interval [l1, l2] ⊂ Z+,
while G(α, β) denotes a gamma distributionwith shape parameter
α and scale parameter β . The n × m zero matrix is represented by
0n×m, while the n-dimensional identity matrix is denoted by In.

2. Problem statement

The present section formally defines the fault diagnosis prob-
lem studied here, makes some preliminary assumptions and pro-
vides a scheme for implementing the method.

2.1. System state-space model

Let the plant be described by the following discrete-time linear
Gaussian state-space model:

xk+1 = Akxk + Bkuk + Γ kwk + Ξkfk (1)
yk = Ckxk + vk + Θkfk (2)
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Fig. 1. Block diagram of the overall fault diagnosis scheme.

where xk ∈ Rnx is the state vector; yk ∈ Rny is the vector
of observed outputs; uk ∈ Rnu is the vector of control inputs;
fk ∈ Rnf is the fault vector; Ak, Bk, Γ k, Ck, Ξk, and Θk are known
deterministicmatriceswith appropriate dimensions; {wk} and {vk}
are mutually independent, zero mean, white, Gaussian sequences
with known covariances, Qk and Rk, respectively. These sequences
are also assumed to be statistically independent of the initial state
x0, which is assumed to be a Gaussian RV with known mean and
covariance.

Remark 1. In Section 3, the sequence of fault vectors {fk} will be
considered as an unknown realization of a sequence of random
variables (RV) statistically independent of x0, {wk} and {vk}.

Remark 2. Let the additive fault on the control input vector be
denoted by δuk. Such an actuator fault is appropriately described
by the fault vector, fk, in (1)–(2), sufficing to do Ξkfk = Bkδuk.

2.2. Scheme for fault diagnosis implementation

Fig. 1 shows the overall scheme adopted for fault diagnosing.
The KF designed with the model of the plant under fault-free
conditions is used for generating the residual signal, rk (with
covarianceVk), that is used as data for both fault detection and fault
diagnosis. The fault detection module has the function of alarming
(e.g., by means of a χ2 test) the occurrence of some fault. Such
binary information, available at the alarm instant ka, is used for
activating the fault diagnosismodule,whose function is to infer the
location, the form, the instant of occurrence and the magnitude of
the fault.

The scheme of Fig. 1 follows the general structure of a system
for model-based fault diagnosis (Frank, 1990), which contains two
mainmodules: a residual generator (KF), and a decisionmaker (fault
detection, fault isolation, and fault estimation). The KF is a con-
venient residual generator for linear systems subject to additive
faults, once the statistical properties of its innovation sequence
let one poses the diagnosis problem as commonly found in detec-
tion theory applications (Kay, 1998). This will become evident in
Section 2.3.

2.3. Residue generation

Under fault-free conditions, i.e. fk = 0, ∀k ∈ Z+, it is well
known that the Minimum Mean-Squared Error (MMSE) estimate

of xk+1 given the measurements y0:k, as well as the corresponding
error covariance are given by the KF algorithm (Anderson &Moore,
1979),

x̂k+1|k = Ākx̂k|k−1 + Bkuk + AkKkyk (3)

Pk+1|k = ĀkPk|k−1A′

k + Γ kQkΓ
′

k (4)

where Āk , Ak

Inx − KkCk


, and the Kalman gain is Kk = Pk|k−1

C′

k


CkPk|k−1C′

k + Rk
−1. The quantity rk , yk − ŷk|k−1, where

ŷk|k−1 , Ckx̂k|k−1 is the innovation vector, which is a Gaussian
RV with zero mean and covariance Vk = CkPk|k−1C′

k + Rk.
Moreover, the sequence {rk} can be shown to be white (Anderson
& Moore, 1979). The KF innovation sequence {rk} is frequently
used as the residual signal for fault detection and diagnosis
(Deshpande, Patwardhan, & Narasimhan, 2009; Gertler, 1988;
Prakash, Narasimhan, & Patwardhan, 2005; Prakash, Patwardhan,
& Narasimhan, 2002; Willsky & Jones, 1976). The fault diagnosis
method proposed in this work is also based on {rk}.

Once an additive fault occurs, the innovation sequence of the
KF (3)–(4) will be still white and Gaussian with covariance Vk,
but its mean deviates from zero in accordance with a linear
function of the sequence of fault vectors, {fk}. A recursive formula
for computing the signature of some hypothesized fault on the
innovation sequence of the above KF is provided by the following
lemma.

Lemma 1. Let the plant be described by (1)–(2), whose KF, under
fault-free conditions, is given by (3)–(4). If {fk} is some realization of
the fault and kf ∈ Z+ is the fault instant, defined as being the largest
integer such that fk = 0, ∀k < kf , then the innovation vector rk at
any instant k is given by

rk = rNk + gk (5)

where

rNk

is white, Gaussian, with zeromean and covarianceVk, and

the fault signature vector is

gk = Ckg̃k + Θkfk (6)

where g̃k is computed recursively by

g̃k = Āk−1g̃k−1 + B̄k−1fk−1 (7)

with initial condition g̃kf = 0. Āk−1 was defined after Eq. (4), and
B̄k−1 , (Ξk−1 − Ak−1Kk−1Θk−1).
Proof. Let fk ≠ 0 for some k > kf . By using Eq. (2), the innovation
of the KF (3)–(4) at k can be rewritten as

rk = Ckx̃k|k−1 + vk + Θkfk (8)

where x̃k|k−1 , xk − x̂k|k−1 is the estimation error, whose mean
value depends on the fault vectors between kf and k − 1. By
taking Eqs. (1)–(3) into account, the estimation error x̃k|k−1 can be
expressed by

x̃k|k−1 = Āk−1x̃k−1|k−2 + B̄k−1fk−1 + ηk−1 (9)

where Āk−1 and B̄k−1 were previously defined, and ηk−1 ,

Γ k−1wk−1 − Ak−1Kk−1vk−1. Now define g̃k , E

x̃k|k−1


. Therefore,

Eq. (7) is obtained by taking the expectation of (9). Finally, define
gk , E {rk}. Thus by taking the expectation of (8), the desired
signature vector, Eq. (6), is obtained. �

The ability to predict the fault signature on the residual signal is
the crucial element to the fault diagnosis problem, as will be seen
in what follows.

2.4. Fault diagnosis problem

The fault diagnosis problem is formulated by considering as
data a set of innovation vectors referring to a fixed-width time
window with initial instant ka.
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