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a b s t r a c t

An averaging result is presented for local uniform asymptotic stability of nonlinear differential equations
without requiring a fast time-varying vectorfield. The nonlinearity plays a crucial role: close to the origin,
the trajectories vary slowly compared to the time dependence of the vectorfield. The result generalises
averaging results which prove stability properties for systems having a homogeneous vectorfield with
positive order. The result is illustrated with several examples.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that a solution of a time-varying system
ẋ(t) = εf (x(t), t) may be approximated by the solution of the
averaged system ẋ(t) = εf (x(t)) on a large time-scale for ε

sufficiently small, (Guckenheimer & Holmes, 1983; Khalil, 2002;
Verhulst, 2000). The averaging technique also provides a tool
to investigate exponential stability of an equilibrium of ẋ(t) =

εf (x(t), t) for ε sufficiently small i.e. exponential stability of the
averaged system ẋ(t) = εf (x(t)) implies exponential stability
of the original time-varying system (Aeyels & Peuteman, 1999;
Khalil, 2002). In other words, for ε sufficiently small, exponential
stability of the equilibrium point x = 0 of ẋ(t) = f (x(t)) implies
exponential stability of x = 0 of the original fast time-varying
system ẋ(t) = f (x(t), t/ϵ). Averaging results are also available
for nonsmooth systems when using dither, where solutions of the
averaged system (with respect to dither frequency) approximate
solutions of the original system (Iannelli, Johansson, Jönsson, &
Vasca, 2006).
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The averaging concept is useful not only in relation to exponen-
tial stability, but also when investigating practical stability prop-
erties (Teel, Peuteman, & Aeyels, 1999) and uniform asymptotic
stability properties (Peuteman&Aeyels, 1999). InM’closkey (1997)
and M’closkey and Murray (1993) the averaging technique is ap-
plied to homogeneous systems of order τ = 0. Homogeneous sys-
tems with order τ > 0 can also be dealt with: in Peuteman and
Aeyels (1999), it is shown that asymptotic stability of the averaged
homogeneous system implies local uniform asymptotic stability of
the original time-varying homogeneous system without requiring
that the original system is fast time-varying.

In this paper, the averaging results discussed in Peuteman
and Aeyels (1999) are generalised. Under extra conditions on
the differential equation, but without requiring homogeneity
of the system, we will show that local asymptotic stability of
the averaged system implies local uniform asymptotic stability
of the original time varying system. This original time-varying
system need not be fast time-varying. Appropriate conditions on
the vector field in terms of class K functions imply the local
uniform asymptotic stability property without requiring a fast
time-varying vectorfield or homogeneity with order τ > 0.
What is needed is that, sufficiently close to the equilibrium
point x = 0, the trajectories are slowly varying compared
to the time dependence of the vectorfield. This is usually
accomplished through the introduction of a parameter ϵ as
indicated above; our main contribution is that in the averaging
approach the role played by ϵ may be assumed by the vector field
itself.

A number of different examples are included to illustrate our
main result and in particular to indicate how it is a generalisation

0005-1098/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2010.10.039

http://dx.doi.org/10.1016/j.automatica.2010.10.039
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:joan.peuteman@khbo.be
mailto:dirk.aeyels@ugent.be
http://dx.doi.org/10.1016/j.automatica.2010.10.039


J. Peuteman, D. Aeyels / Automatica 47 (2011) 192–200 193

of the homogeneous result formulated in Peuteman and Aeyels
(1999).

2. The main averaging result

Consider

ẋ(t) = f (x(t), t) (1)

with f : W × R+
→ Rn, W is an open and convex set, W ⊂ Rn.

Let 0 ∈ W and f (0, t) = 0 for all t ∈ R+. Furthermore, we
assume that conditions are imposed on (1) such that existence and
uniqueness of its solutions are secured (existence and uniqueness
is a standard assumption for all the systems considered in this
paper). The system (1) is time-periodic i.e. there exists a T > 0
such that for all x ∈ W and for all t ∈ R+,

f (x, t) = f (x, t + T ). (2)

For all x ∈ W , define the averaged system as

ẋ(t) = f (x(t)) (3)

where for all x ∈ W ,

f (x) =
1
T

∫ T

0
f (x, t)dt. (4)

We recall when a continuous function is said to belong to class K
or to class KL:

The continuous function α : [0, a) → R+ (for some a > 0) is a
class K function if it is strictly increasing and α(0) = 0.

The continuous functionβ : [0, a)×R+
→ R+ (for some a > 0)

is a class KL function if:

(1) for each fixed s, β(r, s) is a class K function in r
(2) for each fixed r , the function β(r, s) is decreasing in s and

β(r, s) → 0 as s → +∞.

The equilibrium x = 0 of (1) is locally uniformly asymptotically
stable if there exists a class KL function β and a positive constant c
such that ∀t0 ≥ 0

‖x(t0)‖ < c ⇒ ‖x(t)‖ ≤ β(x(t0), t − t0), ∀t ≥ t0. (5)

When for Eq. (3) there exists t0 ≥ 0 for which (5) is true, then (5)
is true ∀t0 ≥ 0: one says that the zero equilibrium of (3) is locally
asymptotically stable.

For the ϵ − δ definitions of local (uniform) asymptotic stability,
the reader is referred to Khalil (2002).

From Lyapunov theory we know that the equilibrium point x =

0 of (3) is locally asymptotically stable when there exists an open
neighborhood U ⊂ W of 0 and there exists a Lyapunov function
V : U → R such that for all x ∈ U:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (6)
∂V
∂x

(x)f (x) ≤ −α3(‖x‖). (7)

Here, α1, α2, α3 : R+
→ R+ are class K functions.

Main theorem. Assume that the following conditions are satisfied:

• the equilibrium point x = 0 of the averaged system (3) is locally
asymptotically stable, equivalently: (6) and (7) are satisfied,

• there exists a class K function α4 : R+
→ R+ such that for all

x ∈ U∂V
∂x

(x)
 ≤ α4(‖x‖). (8)

• f is continuously differentiable with respect to x on W for all t ∈

R+; furthermore: for all x ∈ W and for all t ∈ R+∂ f
∂x

(x, t)
 ≤ α5(‖x‖), (9)

where, α5 : R+
→ R+ is a class K function with the

additional property that sufficiently close to the origin α5(‖x‖(1+

2Tα5(‖x‖))) ≤ 2α5(‖x‖),
• the function

α6(‖x‖) ,
α4(‖x‖)α2

5(‖x‖)‖x‖
α3(‖x‖)

(10)

is a class K function (α6(0) , 0).

Then the equilibrium point x = 0 of the original system (1) is locally
uniformly asymptotically stable.

The three remarks that follow aim to assess the meaning and
significance of condition (9) and (10), and discuss why conditions
(9) and (10) are not compatible with linear systems.

Remark 1. In order to conclude that local asymptotic stability
of the equilibrium point of the averaged system (3) implies
local uniform asymptotic stability of the equilibrium point of
the original system (1) without requiring a fast time-varying
vectorfield, conditions (9) and (10) are crucial. Condition (9)
implies that sufficiently close to the equilibrium point, the
trajectories vary slowly in time, compared to the time-dependence
of the vectorfield. Condition (9) generalises the homogeneous
conditions proposed in Peuteman and Aeyels (1999) where a
positive order τ > 0 is required. Condition (10) is more technical
and plays a crucial role in part VI of the proof.

Remark 2. We discuss the feasibility of the technical condition
that sufficiently close to the origin α5(‖x‖(1 + 2Tα5(‖x‖))) ≤

2α5(‖x‖). In case α5 is continuously differentiable, it is possible
to prove this technical condition using the mean value theorem.
By continuous differentiability, α′

5 is bounded on every arbitrary
compact set [0, r]. The mean value theorem implies the existence
of a z ∈ (‖x‖, ‖x‖(1 + 2Tα5(‖x‖))) such that

α5(‖x‖(1 + 2Tα5(‖x‖))) = α5(‖x‖) + 2Tα5(‖x‖)‖x‖α′

5(z). (11)

Starting with a fixed r , suppose M is an upper bound for |α′

5| on
[0, r]. Taking‖x‖ sufficiently small such that‖x‖(1+2Tα5(‖x‖)) <
r , one obtains that |α′

5(z)| ≤ M . With the additional condition
that ‖x‖ ≤ 1/2TM such that 2Tα5(‖x‖)‖x‖ |α′

5(z)| ≤ α5(‖x‖),
the technical condition is satisfied.

Example 1 (see (82)) and Example 2 (see (94)) also illustrate the
feasibility of this technical condition.

Remark 3. For a linear system and using a quadratic Lyapunov
function V , α3 is a quadratic function and α4 is a linear function.
Condition (9) is not satisfied since ∂ f /∂x is nonzero at the origin.
By replacing α5 in (9) by a constant bound, also expression (10)
does not provide a class K function (one obtains a constant). The
main theorem does not prove stability properties: linear systems
require fast time-varying vectorfields in order to obtain averaging
results (Aeyels & Peuteman, 1999; Khalil, 2002).

Outline of the proof :
First, an appropriate change of variables (21) is defined. This

leads to the system (26) in y which is equivalent with the original
system (1) in x. Since (26) may be seen as a perturbation of
the averaged system (3), the Lyapunov function V is invoked to
prove local uniform asymptotic stability of the equilibrium point
of (26). Formulating this stability property in terms of class KL
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