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a b s t r a c t

Here, a methodology is presented which considers the interpolation of linear time-invariant (LTI)
controllers designed for different operating points of a nonlinear system in order to produce a gain-
scheduled controller. Guarantees of closed-loop quadratic stability and performance at intermediate
interpolation points are presented in terms of a set of linear matrix inequalities (LMIs). The proposed
interpolation scheme can be applied in cases where the systemmust remain at the operating points most
of the time and the transitions from one point to another rarely occur, e.g., chemical processes, satellites.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Gain scheduling has been used successfully to control nonlinear
systems for many decades and in many different applications,
such as autopilots and chemical processes (Rugh & Shamma,
2000). It consists in selecting a family of operating points, or
more generally regions, where the system can be described by
a linear model. A linear controller is designed for each region
which should guarantee performance and robustness in that
region. Finally, the controllers are changed according to a physical
parameter measured in real time, which detects in what region
the system is working at each time. The change of controllers
can be implemented either gradually by interpolation of certain
parameters or by switching.

In practice, switching among controllers may create instability
of the closed-loop system (Liberzon, 2003). Unstable modes and
degraded performance may come from the transition dynamics,
which are not contained in the information provided by each linear
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model. Usually, a way to mitigate this problem is to impose a
certain dwell time (Hespanha & Morse, 1999). However, this is
not able to prevent the undesirable transients, which may require
complex algorithms to reduce their negative effects.

On the other hand, interpolation provides smooth changes
between controllers. In general, this is a fairly simple solution
in cases of SISO problems or fixed structure controllers, such
as PIDs or lateral-directional aircraft control, due to the fact
that only certain fixed parameters are interpolated, e.g. gains,
poles, and numerator/denominator coefficients. However, in more
general cases where the sets of controllers have been designed
independently or are MIMO models, the implementation of
parameter interpolation is not as simple. In addition, in these cases
it is convenient to interpolate the controller state-space realization
instead of parameters from its transfer matrix.

Stability and performance guarantees in the whole operating
envelope can be obtained using linear parameter varying (LPV)
systems theory (Apkarian, Gahinet, & Becker, 1995; Wu, Yang,
Packard, & Becker, 1996). The main problem of this method
is the computational effort needed to obtain an LPV controller
which limits its use to low-order and medium-order systems. In
addition, in many fields, e.g. aerospace, there is a strong interest
of practitioners in using the gain-scheduling method, based on
optimized designs at different operating points.

For controllers designed independently for each point, pre-
vious results have focused on stability (Chang & Rasmussen,
2008; Stilwell & Rugh, 2000) or on controller switching instead
(Blanchini, Miani, & Mesquine, 2009; Hespanha & Morse, 2002).
In particular, in Chang and Rasmussen (2008), Youla parameteriza-
tion has been used, but a network of controllers is produced which
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Fig. 1. Example of division of the region P .

significantly increases the order of the resulting gain-scheduled
control. Some recent results consider the performance problemsby
establishing an adequate controller initial condition when switch-
ing (Hespanha, Santesco, & Stewart, 2007) or by injecting stabi-
lizing signals among the local controllers, based on bumpless
and antiwindup transfer compensators (Hencey & Alleyne, 2009).
There are no results that have focused on both stability and perfor-
mance, based on the adequate selection of the state-space realiza-
tions for interpolation.

This paper focuses on formulating a stability-preserving
interpolation scheme with a performance level guarantee in
the state-space framework. The aim is to obtain gain-scheduled
controllers with similar stability properties as LPV versions and
with the possibility of tuning each linear time-invariant (LTI)
controller independently. The next section presents the problem
statement and Section 3 gives the main results, illustrated by a
short example in Section 4. The paper ends in Section 5 with some
concluding remarks.

2. Problem statement

Consider the set of linear models

Gi(s) =

 Ai B1,i B2
C1,i D11,i D12
C2 D21 0


, i ∈ Inp (1)

describing the local dynamic behavior of a nonlinear or time-
varying system at each operating point parameterized by ρi ∈

P , with Ai ∈ Rn×n and Inp = {1, . . . , np}. The set of points
{ρ1, . . . , ρnp} divides the region P into a set of subregions Pj
defined by the vertices Vj ⊆ {ρ1, . . . , ρnp}, as illustrated in Fig. 1.
Then, any point ρ ∈ Pj can be expressed as a convex combination
of the vertices Vj, i.e.,

ρ =

np−
i=1

αiρi (2)

where α1 + · · · + αnp = 1 and αi ≥ 0, ∀ρi ∈ Vj, αi = 0, ∀ρi ∉ Vj.
The local dynamics at any point ρ ∈ Pj is assumed to be

described as a linear combination of the state-space realizations
corresponding to the vertices Vj:

G(ρ) :

ẋ = A(ρ)x + B1(ρ)w + B2u,
z = C1(ρ)x + D11(ρ)w + D12u,
y = C2x + D21w,

(3)

where[
A(ρ) B1(ρ)
C1(ρ) D11(ρ)

]
=

np−
i=1

αi(ρ)

[
Ai B1,i
C1,i D11,i

]
and αi(ρ) is the coordinate corresponding to ρi.

According to (2), only the matrices corresponding to ρi ∈ Vj
are needed to compute system (3). This class of models is called
piecewise affine LPV systems (Lim & How, 2003); it includes the
classical affine LPV models. The assumption that B2, C2, D12, and
D21 are constant does not impose any serious constraints, and

can be fulfilled by simply filtering the input u and/or the output
y (see Apkarian et al., 1995).

It is assumed that there exists a stabilizing linear controller
designed beforehand and independently for each plant Gi(s):

Ki(s) =

[
Ak,i Bk,i
Ck,i Dk,i

]
, i = 1, . . . , np, (4)

which achieves certain performance specifications, with Ak,i ∈

Rnc×nc . This differs from other synthesis procedures applicable to
the plant (3) such as the gridding method proposed by Wu et al.
(1996) or the switching LPV framework of Lim and How (2003),
where the local controllers are computed simultaneously.

Then, the objective is to formulate an interpolation scheme
for the state-space realizations (4) such that the gain-scheduled
controller

K(ρ) :


ẋk = Ak(ρ)xk + Bk(ρ)y,
u = Ck(ρ)xk + Dk(ρ)y (5)

stabilizes the plant G(ρ) defined in (3) at any point ρ ∈ P , with
Ak(ρ) ∈ Rnk×nk . Note that the order of the local controllers (4) may
differ from the order of the gain-scheduled controller (5) (i.e., in
general, nc ≠ nk).

3. Main results

The following lemma provides a systematic method to find
a quadratically stable interpolation of several Hurwitz matrices.
If the set of matrices Ai represents the local dynamics of an
LPV system at the vertices of a convex hull co{ρ1, . . . , ρnp}, the
following result states that, given a set of Hurwitz matrices, it
is always possible to construct a quadratically stable affine LPV
matrix.

Lemma 3.1. Given a set of matrices Ai associated to each vertex of
the convex hull Θ = co{ρ1, . . . , ρnp}, the following statements are
equivalent.

(i) Ai is Hurwitz for all i ∈ Inp ,
(ii) there exist np matrix transformations Ti such that the LPV matrix

Ã(ρ) =

np−
i=1

αi(ρ)Ãi =

np−
i=1

αi(ρ)TiAiT−1
i (6)

is quadratically stable for all ρ ∈ Θ , with αi(ρ) = αi in ρ =∑np
i=1 αiρi such that

∑np
i=1 αi = 1.

Proof. (i) ⇒ (ii). If Ai is Hurwitz, then ∃Xi > 0 such that XiAi +

AT
i Xi < 0, i ∈ Inp . According to Hespanha and Morse (2002), it

is always possible to find state transformations Ti (e.g. Ti = X1/2
i )

such that

XÃi + ÃT
i X < 0, ∀i ∈ Inp (7)

for a common X > 0, with Ãi = TiAiT−1
i . Finding the coordinates

αi(ρ), with ρ as a convex combination of the vertices of Θ , the
LPV matrix (6) can be constructed. Based on αi ≥ 0, ∀i ∈ Inp ,
inequalities (7) and linearity,

X


np−
i=1

αi(ρ)Ãi


+


np−
i=1

αi(ρ)Ãi

T

X < 0, (8)

and thus the quadratical stability of Ã(ρ) is proved.
(ii) ⇒ (i). Take ρ = ρm, with ρm one of the vertices of Θ; then
αm = 1, and αi = 0, ∀i ≠ m. Therefore, Ã(ρ) = Ãm, and from (8)
it can be concluded that Ãm is Hurwitz, and thus Am. �
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