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Descriptor systems consisting of a large number of differential-algebraic equations (DAEs) usually arise
from the discretization of partial differential-algebraic equations. This paper presents an efficient algo-
rithm for solving the coupled Sylvester equation that arises in converting a system of linear DAEs to ordi-
nary differential equations. A significant computational advantage is obtained by exploiting the structure
of the involved matrices. The proposed algorithm removes the need to solve a standard Sylvester equa-
tion or to invert a matrix. The improved performance of this new method over existing techniques is
demonstrated by comparing the number of floating-point operations and via numerical examples.
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1. Introduction

Descriptor systems, also known as singular systems, implicit
systems or generalized state-space systems, emerge in many
engineering applications (Dai, 1989; Kunkel & Mehrmann, 2006).
For example, in fluid mechanical systems, a descriptor system is
produced by the discretization of Navier-Stokes equations (Jones,
Kerrigan, & Morrison, 2009). Descriptor systems typically consist
of coupled differential and algebraic equations. As a consequence,
the control of descriptor systems is less well-understood than that
for conventional state-space systems. However, it is often possible,
via a sequence of transformations (Gerdin, 2006), to completely
decouple the differential and algebraic parts of a descriptor system,
thus enabling the application of standard state-space control
theory to this class of system.

There are three major steps in the transformation: a gener-
alized Schur decomposition, also known as a Weierstrass—-Schur
form; solving a coupled Sylvester equation, also called a gener-
alized Sylvester equation; construction of appropriately-defined
transformation matrices (Gerdin, Schén, Glad, Gustafsson, & Ljung,
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2007). The first step is extensively well-studied in the field of
numerical linear algebra (Golub & Van Loan, 1996; Kagstrom &
Wiberg, 2000). Various existing methods for transforming a ma-
trix into a Jordan-Schur form and a matrix pencil into a Weies-
trass-Schur form are compared by Kagstrom and Wiberg (2000).
Furthermore, these methods are extended to extracting the par-
tial information corresponding to dominant eigenvalues from large
scale matrices and matrix pencils. The solution and perturbation
analysis of a coupled Sylvester equation is presented in Kagstrém
(1994) and Kdgstrom and Westin (1989). In Kdgstrém and Westin
(1989) the Schur method (Bartels & Stewart, 1972) and the Hes-
senberg-Schur method (Golub, Nash, & Van Loan, 1979), which
are used in solving a standard Sylvester equation, are extended
for a coupled Sylvester equation. In Jones et al. (2009) the coupled
Sylvester equation is transformed into a standard Sylvester equa-
tion and then standard techniques for solving a Sylvester equation
are used.

This paper focuses on the efficient solution of the coupled
Sylvester equation. The computational advantage over existing
methods is obtained by exploiting the special structure of the ma-
trices involved in the transformation of a DAE. The main contri-
bution of this paper is to present a new algorithm for the solution
of the above-mentioned coupled Sylvester equation, which is not
only computationally more efficient than existing techniques, but
also possesses the following important characteristics:

e no need to take an inverse of a matrix,
e Nno matrix by matrix multiplication, and
e no need to solve a standard Sylvester equation.
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2. Problem formulation

Consider a linear differential-algebraic equation (DAE) of the
form

Ex(t) = Fx(t) + Gu(t), x(to) = Xo, (1)

where E,F € C™", G € C™™ x(t) is the state vector and u(t)
is the input. Solving (1) for x(t) with given initial condition xq
and u(-) when E is non-singular is straightforward. In this paper,
we assume that E is singular. Therefore, (1) cannot be solved by
a standard linear ordinary differential equation (ODE) solver. To
overcome this problem, we have adopted the procedure of Gerdin
(2006), which transforms (1) into the following set of linear ODEs
and a set of algebraic equations:

z1(t) = Az;(t) 4 Byu(t), (2a)
o diu()
2(t) =—;st T (2b)

where A € CP*P,B; € CP*™, B, € CI*™ N € C9Yis a nilpotent
matrix of index k i.e. N = 0 and n = p + q. Note that z;(t) and
z,(t) are decoupled. Let us call (2) the standard form of (1). The
theoretical background and the procedure to compute the matrices
involved in this standard form are described next.

Definition 1 (Golub & Van Loan, 1996). Let E,F € C™" be two
matrices. A matrix pencil is a set of all matrices of the form F — AE
with A € C. The eigenvalues of this matrix pencil are defined by
M(F,E) .= {s € C: det(F — sE) = 0}.

Definition 2 (Kunkel & Mehrmann, 2006). A matrix pencil F — AE
is called regular if there exists an s € C such that det(F — sE) # 0,
or equivalently, A(F, E) # C.

The regularity of a matrix pencil F — AE is equivalent to the
existence and uniqueness of the solution for system (1) (Dai, 1989).

Lemma 1 (Gerdin, 2006, Lemma 2.1). Consider the system (1). If the
matrix pencil F — AE is regular, then there exist non-singular matrices
Py and Q; such that

Ey E Fi F
PlEQ1=[0] Ei] and PlFQ1=[01 F;], (3)

where E; € CP*P is non-singular, E3 € C9%? is upper triangular
with all diagonal elements zero, F3 € C9*? is non-singular and upper
triangular, E,, F, € CP*9, and F, € CP*P,

The generalized Schur decomposition (3) and the subsequent
reordering of the diagonal elements of E; can be done using
MATLAB’s gz and ordqz functions, respectively. These functions
call LAPACK routines zgges and ztgsen for complex matrices.

Remark 1. The decomposition of the matrix pencil F — AE by
MATLAB’s qz function produces upper triangular matrices. There-
fore, E; and F; would be upper triangular.

There are three main steps in computing the standard state-
space form of (1), which are listed below:

(1) Compute the generalized Schur decomposition of the matrix
pencil F — AE as

Pi(F — AE)Q; = [F01 E} — A [%‘ gj] : (4)

(2) Solve the following coupled Sylvester equation for L and R:
EiR + LE; = —E,, (5a)
FiR+ LF; = —F;, (5b)
where L, R € CP*1,

(3) According to Lemma 1, if the matrix pencil F — AE in (1) is
regular, there exist nonsingular matrices P and Q such that the

transformation:
PEQQ ~'k(t) = PFQQ ~'x(t) + PGu(t) (6)
gives the system in standard form (2), where
E;Y oo [1 L
r=[5" 28 o
3
I R -1 -1
Q=0Q |:O I] , N = F; 'Es, A=E; F, (7b)
Bi| . _nz®
[32] = PG, x(t) =Q [zz(t)] . (7¢)

3. Solution of the coupled Sylvester equation

In this section, we propose a new and efficient algorithm for
the solution of the coupled Sylvester equation (5) for R and L. This
is done by exploiting the structure of the given matrices. From (5),
we get

[0 e%z 3?3 e e? q
3 3’
0 0 e, -- €4
EiR+L|: : : : = —E,, (8a)
0 0 0 - e,
10 O 0
_f 131 f 122 e f 1}1
0 fo - fz,q
FIR+L| . .. = -k, (8b)
) 0o --- q3,q

where eg- denotes the (i, j)th element of matrix Ei. The ith column
of R, L, E;, and F, is denoted by r;, I;, €2, and f? respectively. By

l' ’
comparing the first column of both sides of (8a), we get E;rqy = —e%.
Since E; is upper triangular, the above equation can be solved for
ry using backward substitution. By comparing the first column

of both sides of (8b), we get [; = —f% (FE 4+ Firy) if f3 # 0.
11

Since F3 is non-singular and upper triangular, if’ # 0 for each
i. Similarly, by comparing the ith column of (8a), we get Eir; =
—e? — Yo\ el and by comparing the ith column of (8b) we
get; = —fii? (fiz +Firi+ Y f,filk) if f2 # 0. The complete
algorithm is described in Algorithm 1. Algorithm 1 is well-defined
for ¢ > 1, which is proven next.

Proposition 1. Consider Lemma 1. If rank(E) = n —r forr > 1,
thengq > 1.

Proof. LetE := P1EQ;, where P; and Q; are non-singular matrices
defined in Lemma 1, hence rank(P;) = rank(Q;) = n.
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