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An intrinsic description for dynamic systems, whose evolution along discrete time is governed by
(nonlinear) implicit difference equations in one independent variable and zero-order (algebraic)
equations, is presented by means of differential geometrical methods, where systems are associated with
appropriate geometric objects reflecting their dynamics. Dynamic systems given in implicit form have
the peculiarity that they may contain so-called hidden restrictions. A normal form is presented which
is characterized by the circumstances that there are no further restrictions. In addition, it is illustrated
that such a normal form allows for an equivalent system representation in explicit form. Based on the
geometric picture of (implicit) discrete-time systems the qualitative property of accessibility along a fixed
trajectory is discussed. By applying symmetry groups of discrete-time systems and studying invariants of
these groups a formal approach is provided that allows us to gather local accessibility criteria successively,

Accessibility
Control system analysis
Differential geometry

which can be tested by computer algebra. Several examples illustrate the results.
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1. Introduction

In modeling physical processes systems, which evolve along
discrete time, arise quite naturally. Such discrete-time proce-
dures are found in multiple problems of finance and economics
for instance. Discrete-time systems even appear by the (semi-)
discretization of lumped and distributed parameter systems; in
control theory it is well established that this class of dynamic sys-
tems is of particular interest regarding the digital implementation
of control laws.

In the present work it is supposed that a discrete-time dynamic
process is described by a set of n, implicit difference equations

0=f"(k,z(k),z(k+1)), a=1,...,n (1a)
and n, output functions
yo k) =k, z(k), aoy=1,...,n, (1b)

where the independent variable k € Z denotes the discrete
time steps and a solution sequence is indicated by z% (k), o, =
1, ..., n;. An intrinsic formulation is encouraged by identifying
implicit systems with a geometric object; namely, the system
equations describe a submanifold of some larger space. Systems
given in implicit form have the peculiarity that they may contain
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so-called hidden restrictions. In this context a normal form is
proposed such that a representation of a discrete-time system
without additional (hidden) equations is obtained, which may
describe a smaller submanifold; hence, it contains all possible
solutions of the system. Moreover, such a geometric picture offers
the possibility to apply well appreciated tools for the analysis of
nonlinear systems, see, e.g., Grizzle (1985), Monaco and Normand-
Cyrot (1984), Nijmeijer and van der Schaft (1991), and references
therein.

A main issue of this paper is to emphasize that differential
geometric methods are appropriate for a study of implicit
discrete-time dynamic systems by taking the derived intrinsic
geometric description into account. In order to motivate for a
system-theoretical analysis we confine to the investigation of the
accessibility property. A crucial observation is that the formal
Lie group approach for the analysis of continuous-time dynamic
systems is applicable in discrete time, see, e.g., Holl (2005), Rieger,
Schlacher, and Holl (2008) and Schlacher, Kugi, and Zehetleitner
(2002), where local criteria can be derived via an infinitesimal
principle of invariance without utilizing the solution of the
dynamic system explicitly. The obtained tests can be checked by
computer algebra at least for polynomial systems (with Groebner
bases, see, e.g., Cox, Little, & O’Shea, 1992).

The accessibility property of (explicit) discrete-time systems
is well studied in the literature, see, e.g., Albertini and Sontag
(1993), Aranda-Bricaire, Kotta, and Moog (1996), Barbot (1990),
Fliegner (1995), Fliess and Normand-Cyrot (1981), Halas, Kotta,
Li, Wang, and Yuan (2009), Jakubczyk and Sontag (1990), Kotta
(2005), Simes (1996), Wirth (1998), Zhang and Zheng (2004)
and references therein. In contrast to the proposed approach
we refer to, e.g., Albertini and Sontag (1993), Aranda-Bricaire
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et al. (1996), Fliess and Normand-Cyrot (1981) and Jakubczyk
and Sontag (1990), where also geometric methods are applied
and criteria for accessibility with respect to explicit (invertible)
discrete-time systems in terms of appropriate distributions and
codistributions are derived, respectively, hence, using a different
notion of accessibility. Here, accessibility is studied along a
trajectory (with given input) and for a fixed number of time steps.
Whereas in, e.g., Albertini and Sontag (1993), Aranda-Bricaire et al.
(1996) and Jakubczyk and Sontag (1990) all possible inputs and
an arbitrary number of time steps are considered and, thus, in the
context of the definition, used in this contribution, the question is
answered whether there exists a trajectory such that the system
is accessible. To the knowledge of the authors there are not many
publications focusing on implicit discrete-time nonlinear control
systems, see, e.g., Fliegner, Kotta, and Nijmeijer (1996), Fliegner
(1995), Simes (1996), Simes and Nijmeijer (1995) and references
therein.

This contribution is organized as follows. In Section 2 the intrin-
sic description of implicit discrete-time dynamic systems is pre-
sented. In Section 3 a normal form for implicit systems is derived
and it is shown that it is equivalent to an explicit one at least lo-
cally. Based on the intrinsic picture of systems the accessibility
problem for discrete-time systems is treated in Section 4. By the
consideration of invariants of (local) transformation groups acting
on the solution of the dynamic system (local) criteria for the acces-
sibility along a fixed trajectory are obtained. In order to illustrate
the straightforward applicability of the developed theory, the pre-
sented methods are applied to several examples. The contribution
finishes with some conclusions.

2. A geometric description of implicit discrete-time systems

In system theory dynamic systems are identified with geomet-
ric objects in order to obtain a coordinate-free representation, see,
e.g., Isidori (1995). Thus, it is the intention to consider geometric
objects together with diffeomorphic changes of local coordinates
equipped with a structure, which reflects the dynamics of discrete-
time systems. The construction of an intrinsic representative relies
here on the concepts of manifolds and bundles, where the inter-
ested reader is referred to, e.g., Saunders (1989) and Spivak (1979)
for an introduction and much more detail.

2.1. Dynamic systems in implicit form

For the investigation of implicit systems we utilize a system
representation by means of a set of general coordinates resp. so-
called descriptor variables, see, e.g., Luenberger (1977) for a similar
approach, such that there is no distinction of state and input
variables a priori. Let us introduce the dependent coordinates z
as descriptor variables as well as k as an independent coordinate
with! zz = z(k) and z.; = z(k + 1), where z(k) is a solution
sequence of the system (1). Then, an implicit system can be
rewritten in the form

0 = f*(k, z, k1), e =1,...,7,

oy oy k _ (2)
Y =Yk z), ay=1,...,n,.

If the initial condition z(kg) = z, is considered, the solution

sequence z(k) can be determined for k > kg, which is not
unique in general and may even not exist. It is worth mentioning
that the existence and uniqueness of solutions can be related
to the so-called regularization problem, see, e.g., Xiaoping and
Celikovsky (1997) for continuous-time affine nonlinear singular
control systems.

1 Note that z;, is a coordinate and z(k) is the kth element of a sequence z.

In order to point out the geometric picture of an implicit
system (2) the bundle (&%, 7wz, 8B) is introduced. Basically, k is the
coordinate on the (discrete) base manifold 8, which is isomorphic
to the set of integers Z, see, e.g., Munkres (1991), and (k, z;) with
zZy = (z;fz), o, = 1,...,n, are the (local) coordinates on the
total manifold &z. Then, the projection becomes g &y —
B; (k,zx) +— (k). The set of sections y : 8 — &z with y(k) =
(k,z%2(k)) = (k, y*2(k)) is denoted I" (8B, &z). In order to avoid
any mathematical irregularities from now on it is assumed that all
manifolds are smooth manifolds and the functions f and ¢ depend
smoothly on their arguments for fixed k.2 If the latter assumption
do not hold, the presented methods do not lose their validity;
hence, often many distinctions of cases can be avoided.

Let s;(y) denote the equivalence class of all sections y €
I'(8, &) atk € B such that j (k) = y (k) as well as o' (y (k)) =
oi(y(k),i=1,...,nis satisfied, where o’(-) denotes the i-times
application of the (forward) shift operator, o (y (k)) = y(k + 1).
Then, the set of equivalence classes sj(y) can be endowed with
the structure of a manifold S"(6z) = {sj(y) | k € B,y : 8 —
&z}, equipped with the adapted coordinates (k, zy, Zk+1, - - - » Zk+n)-
The prolongation of a section y € I'(B, &z) to I'(B, S"(8z)) is
denoted s"(y) with s"(y) (k) = (k, y (k), y(k+ 1), ..., y(k+n)).

Example 1. The sections y,y € I'(8, éz) with n, = 1 and
yk) = (kk+ 2), y(k) = (k,k* + 2) belong to the same
equivalence class s(l)(y) at k = 0 because y(0) = y(0) = 2 and
y()=7(1) =3

Remark 2. The manifolds S"(&5) represent the counterpart of the
well-established jet manifolds, see, e.g., Saunders (1989), used for
continuous-time systems, which are defined under the assumption
of a smooth base manifold 8, isomorphic to R, as the equivalence
class of all sections y € I' (B, &%) satisfying y(t) = y (t) as well
as 8y (t) = dly (t),i = 1, ..., n,where 3! indicates the ith partial
derivative with respect to the coordinate t on 3.

According to the construction of the manifolds S"(&z) the triple
(S"(€z), my, €z) represents a bundle with the projection
S"(&z) — &z; (k, zky Zks1s - - - » Zkan) = (k, z). A diffeomorphic
change of coordinates, which preserves the bundle structure, reads
as®

zZ* =y (k, z1),

k

2 _ ap . )
Zf<+i_ z (k+l’zk+x)»

o, =1,...,n,,

i=1,...,n. (3)
A geometric picture of an implicit discrete-time system follows by
the assumption that the system equations® fy = f (k, zx, Zxs1) = 0
describe a (locally) regular submanifold M, C S'(&z) for any
k > ko with constant dimension, see, e.g., Giachetta, Mangiarotti,
and Sardanashvily (1997), Saunders (1989) and references cited
therein. In addition, we have the mapc : 6z — Y, c%(k,z) €
C®(&z) withy, € Y. Asectiony € I'(B, Ez) withy : k
y (k) = (k, z*2(k)) = (k, y*2(k)), which satisfies the equations

feeos' ()l = f(k, z(k), 2(k + 1)) = 0 (4)

is called a solution of the implicit discrete-time system with the
initial condition y (ko) = (ko, z(ko)) = (ko, zk,)-

2 For the succeeding investigations actually only C'-manifolds and functions f, ¢
of class C! are required.

3 For an abbreviation k = Vi (k) is neglected where it is assumed that the
transformation v, retains the ordering such that for any k; > ky, ¥ (ky) > ¥ (k1)
is implied.

4 The subscript k denotes the evaluation of an expression for fixed k.
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