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a b s t r a c t

In this paper we investigate the cost of complexity, which is defined as the minimum amount of input
power required to estimate the frequency response of a given linear time invariant system of order nwith
a prescribed degree of accuracy. In particular we require that the asymptotic (in the data length) variance
is less or equal to γ over a prespecified frequency range [0, ωB]. The models considered here are Output
Error models, with an emphasis on fixed denominator and Laguerre models. Several properties of the
cost are derived. For instance, we present an expression which shows how the pole of the Laguerre model
affects the cost. These results quantify how the cost of the system identification experiment depends on n
and on themodel structure. Also, they show the relation between the cost and the amount of information
we would like to extract from the system (in terms of ωB and γ ). For simplicity we assume that there is
no undermodelling.

© 2011 Elsevier Ltd. All rights reserved.

0. Notation

The complex conjugate of the complex number z is denoted z̄.
The complex conjugate transpose for thematrixX is denotedX∗, its
transpose is denoted XT , its adjoint is Adj X , and its column range
space is written Range{X}. The Kronecker delta function is defined
by δk. The time shift operator is denoted q, i.e. qu(t) = u(t + 1). R
denotes the field of real numbers. C denotes the field of complex
numbers. The unit circle is defined by T := {z ∈ C : |z| = 1}.
The interior of the unit disc is denoted D := {z ∈ C : |z| < 1}
and its exterior E := {z ∈ C : |z| > 1}. ln is considered to be
the principal branch of the logarithm, i.e. Im{ln(z)} ∈ (−π, π]

for all z ∈ C \ {0}. Denote by G(q) a transfer function. The Hardy
space of analytic functions f on E taking values on Cn such that
limr→1+

 π

−π
‖f (rejω)‖2

2dω < ∞ is denoted as H2 (Duren, 1970;
Koosis, 1998).

1. Introduction

Real world systems are often of large order. Unfortunately a
largemodel complexity leads to poormodel accuracy. For example,
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consider the well-known approximate variance expression

n
N

Φv(ω)

Φu(ω)
(1)

for parametric frequency function estimates, presented in Ljung
(1985) where Φu and Φv denote the power spectrum of the input
signal and the noise which corrupts the output measurements,
respectively. Furthermore, n denotes the model order and N
is number of observations of input–output measurements. This
formula indicates a ‘curse of complexity’ since the variance grows
linearly with the model order.

This paper is a piece of the puzzle to understandingwhy system
identification, despite this rather pessimistic observation, iswidely
used in industrial practice as a reliable system modeling tool.

Example 1. Consider a Finite Impulse Response (FIR) system
described by

y(t) =

n−
k=0

θkq−ku(t) + e(t) = G(q, θ o)u(t) + e(t),

where e(t) is white noise of variance σ 2
e . For a white noise input of

variance σ 2
u , it can be established from non-asymptotic (in model

order) variance expressions (Ljung, 1999) that the normalized
covariance of an efficient estimator of θ is

lim
N→∞

N Cov θ̂ =
σ 2
e

σ 2
u
I,

which does not depend on the model complexity. Furthermore,
we also obtain consistent estimators of the impulse response
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coefficients in case of undermodelling (Hjalmarsson, Mårtensson,
& Wahlberg, 2006). However, if we were interested in the
frequency response of G, we have by (1) (which gives an exact
result in this case) that

lim
N→∞

N VarĜ(ejω) = n
σ 2
e

σ 2
u
,

which increases with n. Furthermore, it holds that Ĝ is not
consistent in the case of undermodelling.

Now consider a constant input with power σ 2
u . In this case, by a

non-asymptotic (in model order) analysis (Hjalmarsson, 2005), we
obtain at ω = 0 that

lim
N→∞

N VarĜ(ej0) =
σ 2
e

σ 2
u
,

and Ĝ(1) gives a consistent estimator of the static gain of G. For
this input, however, the impulse response coefficients are not even
identifiable! �

From the previous example, we see that we cannot expect
to be able to accurately identify complex systems with flexible
models. However, certain properties can be extracted accurately.
Here, the input excitation plays a key role. The input signal can
force interesting properties to become visible in the output and
it can hide properties of little or no interest. This is in fact what
optimal input design is all about. Let us give a formal result
presented in Mårtensson and Hjalmarsson (in press) (see also
Hjalmarsson et al. (2006)). Let J(g) denote the quantity of interest,
where g = (g0, g1, . . .) is the impulse response. Suppose that
Φ(ω) =

∑
∞

k=−∞

∂ J(g)
∂g|k|

e−jωk is a spectrum (i.e. non-negative for
all ω ∈ [−π, π]). Taking as input spectrum Φu(ω) ∼ Φ(ω)
results in an estimate of J that is optimal in the sense that
minimal energy is used to achieve the resulting accuracy of J . The
variance of the estimate of J is independent of howmany non-zero
impulse response coefficients the system has (as long as themodel
structure contains the true system). Furthermore, the estimate of
J is consistent for any model order for this input signal. It can be
shown that if the property of interest is for example a minimum
phase zero (J = zo) or the static gain of the system (J =

∑
∞

k=0 gk),
then the optimal input is independent of the model order! This
result is encouraging in the light of the ‘curse of complexity’ earlier
mentioned. This paper is an extension of those previous results to
include the entire frequency range in J .

The conceptual problem treated in this paper is the following.
Let c be a system complexity measure. Let η be a measure of
how much system information is to be extracted from data,
for example, system parameters, poles, zeros, the static gain or
the frequency response over some bandwidth. The identification
purpose is to estimate the system information corresponding
to η to within an accuracy γ . The objective is to quantify the
experimental cost as a function of c , η and γ (and the noise
properties). The cost of complexity is formally denoted Q (c, η, γ ).
In this paper we consider Output Error (OE) models with an
emphasis on fixed denominator models and Laguerre models.
In relation to the authors’ previous work, this paper extends
the results in Rojas, Barenthin, Welsh, and Hjalmarsson (2008b,
2010), which treat Finite Impulse Response (FIR) models, to more
general model structures. Furthermore, in this paper the model
complexity is represented by the number of parameters, i.e. c =

n. Let θ̂N,n denote the prediction error (PE) parameter estimate
(Ljung, 1999). The system information of interest is the frequency
response estimate G(ejω, θ̂N,n) over the frequency range [0, ωB].
The accuracy is given by

lim
N→∞

N Var{G(ejω, θ̂N,n)} ≤
1
γ

.

The cost of the identification experiment is the input power
1/2π

 π

−π
Φu(ω)dω. The problem is formally posed as

Q (n, ωB, γ ) = min
Φu(ω)

1
2π

∫ π

−π

Φu(ω)dω

s.t. Φu(ω) ≥ 0, |ω| ≤ π

lim
N→∞

N Var{G(ejω, θ̂N,n)} ≤
1
γ

, |ω| ≤ ωB.

(2)

In fact this problem is an input design problem in the least costly
framework (Bombois, Scorletti, Gevers, Van den Hof, & Hildebrand,
2006), which implies that there is a trade-off between the cost
and the quality of the system information to be extracted. The
contribution of this paper is that we take this one step further by
analytically quantifying the cost Q (n, ωB, γ ). For OE models, we
examine the monotonicity of the cost with respect to ωB and n
and the cost associated with white input spectra. Also the cost is
quantified for the casesωB = 0 andωB = π . For fixed denominator
structures a lower bound for the cost is provided. This bound is a
function of the (known) systempoles. For Laguerremodels the cost
is compared to FIR models with respect to the pole location in the
Laguerre model.

The observation that the input spectrum can be designed
to shape the model quality was already made in the 1970s
(Goodwin & Payne, 1977; Mehra, 1974) and has been widely
applied, see e.g. Bombois et al. (2006), Cooley and Lee (2001),
Hildebrand and Gevers (2003), Hjalmarsson (2005), Jansson and
Hjalmarsson (2005) and Walter and Pronzato (1997). Results on
optimal experiment design have also appeared in the statistics
literature (Atkinson, Donev, & Tobias, 2007; Fedorov, 1972;
Fedorov & Hackl, 1997; Pronzato, 2008; Pukelsheim, 1993). In
this paper we exploit the fact that the problem (2) can be recast
as a Linear Matrix Inequality (LMI) optimization problem; see
Hildebrand and Gevers (2003), Jansson and Hjalmarsson (2005)
and Lindqvist (2001). In order to establish properties of the cost of
complexity we then use orthonormal basis functions and so-called
reproducing kernels (Malmquist, 1926; Ninness & Gustafsson,
1997; Ninness & Hjalmarsson, 2004; Ninness, Hjalmarsson, &
Gustafsson, 1998). Such functions have been used for system
identification; see e.g. Van den Hof, Heuberger, and Bokor (1995)
and Wahlberg (1991). In Heuberger, Van den Hof, and Wahlberg
(2005), Mårtensson (2007) and Ninness and Hjalmarsson (2004)
these functions have been used to quantify the variance of different
model properties.

The model structures considered in this paper include those
which are nonlinearly parameterized. For those structures, the
optimal input associated with the cost Q will typically depend on
the parameters of the true system. We are not concerned with
this problem here, since our focus is on the theoretical analysis of
the optimal cost Q . However, the interested reader may consult
references such as (Gerencsér & Hjalmarsson, 2005; Rojas, Welsh,
Goodwin, & Feuer, 2007) on robust and adaptive input design,
where the problem of the dependence on the true system is
explicitly addressed.

It is worth noting that the number of parameters n is not the
only possible measure of model complexity. In fact, Zames and
collaborators also studied the cost of identifying a linear system
(Zames, 1979; Zames & Owen, 1993), but they pursued a different
approach, using concepts like ϵ-entropy and ϵ-dimension, from
Kolmogorov’s theory of complexity. However, in our framework,
n seems to be a natural measure of model complexity, as it arises
in most of the expressions (and bounds) for the cost of complexity
deduced in the paper.

This paper is organized as follows. Section 2 presents themodel
structure. In Section 3, the problem is mathematically formulated.
The main results are presented in Sections 4–6. In Section 4, we
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