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a b s t r a c t

In this paper, the strictly convex quadratic program (QP) arising in model predictive control (MPC) for
constrained linear systems is reformulated as a system of piecewise affine equations. A regularized
piecewise smoothNewtonmethodwith exact line search on a convex, differentiable, piecewise-quadratic
merit function is proposed for the solution of the reformulated problem. The algorithm has considerable
merits when applied to MPC over standard active set or interior point algorithms. Its performance
is tested and compared against state-of-the-art QP solvers on a series of benchmark problems. The
proposed algorithm is orders of magnitudes faster, especially for large-scale problems and long horizons.
For example, for the challenging crude distillation unit model of Pannocchia, Rawlings, and Wright
(2007) with 252 states, 32 inputs, and 90 outputs, the average running time of the proposed approach
is 1.57 ms.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) owes its popularity to the
fact that it is one of the few control methodologies that can
stabilize linear or nonlinear systems subject to hard input and
state constraints. The popularity of themethod is due to the strong
theoretical background that has been developed over the past few
years (Mayne, Rawlings, Rao, & Scokaert, 2000; Rawlings &Mayne,
2009), the development of efficient optimization algorithms and
codes, and the substantial increase in computational power. For
linear systems with linear constraints and convex quadratic stage
cost, the resulting optimal control problem can be formulated as
a quadratic program (QP), and off-the-shelf QP solvers allow the
application ofMPC for small-scale tomedium-scale processeswith
a moderate prediction horizon and slow dynamics.

However, the repeated solution of the finite-horizon optimal
control online remains the main bottleneck of the methodology.
Specifically, for high sampling rates and large-scale systems the
computational time needed to solve the QP problem becomes a
limiting factor of the method.

There are two major categories of QP algorithms: active set
and interior point methods. Active set methods try to identify
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the set of inequality constraints that are satisfied as equalities at
the optimal solution, and they can be classified into primal and
dual feasible algorithms. Interior point algorithms move from an
interior point of the feasible set towards the optimal solution by
following the so-called central path. Specifically, Rao, Wright, and
Rawlings (1998) appliedMehrotra’s predictor–corrector algorithm
(Mehrotra, 1992) using a discrete-time Riccati recursion to solve
the system of linear equations in MPC problems, thus considerably
reducing the computational effort. Recently, Wang and Boyd
(2010) proposed an infeasible start primal barrier method, in
which the structured system of linear equations at each Newton
iteration is solved efficiently using block elimination. Active set
methods usually require a large number of computationally cheap
iterations, while interior point methods need only a few but more
expensive steps.

To overcome the limitations of the aforementioned techniques,
some other alternatives have been proposed in the literature for
solving MPC problems efficiently. Specifically, taking advantage
of the simplicity of the constraints appearing in the dual of a
strictly convexQP, Axehill andHansson (2008) proposed a gradient
projection method (Bertsekas, 1999; Nocedal & Wright, 2006)
applied to the dual QP of the MPC problem. Unlike the dual
active set algorithm, gradient projection permits large changes
of the working set. In Richter, Jones, and Morari (2009), the
optimal gradient method of Nesterov (1983) is employed to solve
MPC problems with lower and upper bound constraints on the
manipulated variables only. In Cannon, Liao, and Kouvaritakis
(2008), Pontryagin’s minimum principle is employed to replace
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matrix factorizations during standard active set algorithms by
recursions of state and co-state variables, resulting in linear
complexity per iteration with respect to the prediction horizon for
input constrained linear MPC.

On a different approach, the observation that MPC for
constrained linear systems can be formulated as a parametric QP
(Bemporad, Morari, Dua, & Pistikopoulos, 2002) has enabled the
offline solution of the optimal control problem and the explicit
calculation of the MPC controller as a piecewise affine mapping
of the measured state. However, the applicability of parametric
programming is limited to small-scale to medium-scale systems
and prediction horizons. To overcome the limitation of parametric
MPC, Ferreau, Bock, and Diehl (2008) proposed an online active set
strategy that exploits the solution information of the previous QP
by moving along a homotopy path from the previous solution to
the current solution while adding and dropping constraints like a
usual active set algorithm. Based on the observation that in real
time the system traverses only a small fraction of those critical
regions, Pannocchia et al. (2007) proposed the partial enumeration
method. As the name suggests, only a small number of active sets
and expressions of the piecewise affine (PWA) control law are
computed offline via simulations and stored in a look-up table.

In the present work, we show how MPC for linear systems
with arbitrary polyhedral state and control constraints reduces to
finding a zero of a system of piecewise affine (PWA) equations. One
could then apply a piecewise smooth Newton method (Facchinei
& Pang, 2003; Kojima & Shindo, 1986) in order to find the MPC
control law. The algorithm converges in quadratic rate locally. In
order to globalize the Newton method and obtain convergence
from any starting point, whether it is feasible or not for the
QP, one can follow the route used in most of the globalized
versions of Newton method and perform a line search based on
a merit function. For the MPC problem, one can easily obtain
a convex, continuously differentiable, piecewise quadratic merit
function, i.e. a convex quadratic spline, whose minimizers are
the zeros of the system of the PWA equations. Therefore, MPC
essentially reduces to the unconstrained minimization of a convex
quadratic spline. In this work, we apply the technique developed
by Li and Swetits (1997, 1999) to solve the unconstrained
minimization problem, with some modifications that speed up
convergence. It is worth noting that such kind of reformulations
have been proposed for support vector machine classification
with very encouraging results (Mangasarian, 2002). Furthermore,
similar piecewise smooth Newton methods have been employed
for the solution of Huber’s M-estimation problems in linear
regression (Chen & Pinar, 1998;Madsen &Nielsen, 1990)with very
encouraging results.

The contribution of the paper lies in the application of refor-
mulation techniques to solve QP problems arising in linear MPC.
Furthermore, we offer new insights to the algorithm of Li and
Swetits (1997, 1999) by establishing a connection with piecewise
smooth Newton methods for nonsmooth equations (Section 4).
Additionally, we propose some modifications with respect to the
Newton approximation scheme and step-size selection (Section 6),
that lead to significant convergence speed-up in MPC problems
(see also Remark 1).

Exploiting the structure of the problem, itwill be shown that the
system of linear equations that needs to be solved at each iteration
is positive semidefinite and of significantly smaller dimension than
that of the dimensions of the original problem. The linear system
of equations can be solved effectively by updating the Cholesky
factor at each iteration. Furthermore, an exact line search can be
performed very quickly, leading to very fast convergence rates and
small computational times.

The proposed algorithm is compared against state-of-the-
art solvers in random instances of MPC problems and various
benchmark problems from the literature. The results are very
encouraging, especially for large-scale systems and long prediction
horizons.

2. Notation

The finite set of integers {1, . . . ,m} is denoted by N[1,m]. For
a set I ⊆ N[1,m], Ic denotes its complement in N[1,m], i.e. Ic

=

N[1,m]\I. IfA ∈ Rm×n is amatrix, c ∈ Rm is a vector and I ⊆ N[1,m],
J ⊆ N[1,n] are ordered subsets, then AI· is the matrix formed
by the rows of A whose indices are in I, AI J denotes the matrix
formed by the rows and columns of A whose indices are in I and
J , respectively,and cI denotes the vector formed by the elements
of c whose indices are in I. For a vector y ∈ Rm, [y]+ denotes
a vector whose ith component is max{yi, 0}. For a given pair of
vectors ℓ ∈ Rm, u ∈ Rm, with ℓi ⩽ ui for i ∈ [1,m], mid(ℓ,u; y)
denotes the vectorwhose ith component ismax{min{yi,ui}, ℓi} for
any y ∈ Rm. This function is known as the mid function in the
optimization community or the saturation function in the control
community.

3. Model predictive control for constrained linear systems

We consider the following discrete-time linear, time-invariant
system:

x(t + 1) = Ax(t)+ Bu(t), (1)

where x(t) ∈ Rnx is the state and u(t) ∈ Rnu is the control input.
We assume perfect state measurement and that (A, B) is stabiliz-
able. The system’s input and state should belong to the following
polyhedral set:

Y = {(u, x) ∈ Rnu × Rnx |fmin ⩽ Fuu+ Fxx ⩽ fmax}, (2)

where Fu, Fx, are nc × nu and nc × nx matrices, respectively, and
fmin ∈ Rnc , fmax ∈ Rnc with−∞ ⩽ fimin < fimax ⩽∞. Consider the
following regulator problem:

PN(x) V ⋆N(x) , inf{VN(x,u)|u ∈ UN(x)}, (3)

where the finite-horizon cost is

VN(x,u) ,

N−1−
k=0

ℓ(xk,uk)+ Vf (xN) (4)

and UN : Rnx ⇒ RNnu is

UN(x) ,

u = (u0, . . . ,uN−1)


x0 = x
xk+1 = Axk + Buk
(xk,uk) ∈ Y , k ∈ N[0,N−1]
xN ∈ Xf

 . (5)

The stage cost is ℓ(x,u) , 1
2 (x
′Qx + u′Ru), the terminal cost is

Vf (x) , 1
2x
′Pf x, and Xf , {x ∈ Rnx |kmin ⩽ Hf x ⩽ kmax} is a

polyhedral terminal set, where Hf is an nf × nx matrix and kmin

∈ Rnf , kmax ∈ Rnf with −∞ ⩽ ki
min < ki

max ⩽ ∞. We assume
that R is symmetric positive definite and that Q, Pf are symmetric
positive semidefinite matrices of compatible dimensions. Notice
that we have used lower and upper bounds in the definition
of Y and Xf . This assumption is not restrictive, since we allow
upper or lower bounds to be equal to infinity. In fact, it is a
common practice in MPC to have lower and upper bounds on
the input and state variables. Furthermore, it will be shown next
that this formulation significantly reduces the complexity of the
proposed technique. Removing equality constraints, performing
trivial algebraic manipulations, and omitting terms from the cost
function that are independent of u, the finite-horizon optimal
control problem can be expressed as

min

1
2
u′Mu+ c(x)

′

u|bmin(x) ⩽ Gu ⩽ bmax(x)

, (6)

where G ∈ Rm×Nnu with m , Nnc + nf . The matrices and vectors
appearing in (6) can be found in Patrinos, Sopasakis, and Sarimveis
(2010).
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