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a b s t r a c t

This paper describes an optimal ripple-free deadbeat control strategy for single-input–single-output
(SISO) linear sampled data plants. The cost function to be minimized is a linear combination of a time-
weighted cumulative term that penalizes the tracking error, that is, an integral of time squared error (ITSE)
cost term, and a cumulative termwhich penalizes the control signal deviations from its steady-state value.
The optimization problem turns out to be convex, and closed-form solutions are obtained. An example is
included to illustrate our results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In optimal control, the choice of the performance index is a key
issue, since it defines the quality measure used to assess controller
performance. Commonly used time-domain indices include the ISE
(integral1 squared error) index, which is related to the 2-norm, the
IAE (integral of the absolute error) index, related to the 1-norm, and
the ITSE (integral of time squared error) index (Duarte-Mermoud
& Prieto, 2004; Ogata, 1997).

The ITSE index has been used in connection with the tuning of
proportional–integral–derivative (PID) controllers (Ogata, 1997).
A deeper treatment of this index can be found in Carrasco and
Salgado (2009), where a set of analytical tools for the optimal
design of controllers for stable discrete-time single-input–single-
output (SISO) plants is presented. Also, Barbargires and Karybakas
(1994) presents optimal deadbeat controller design for discrete-
time SISO plants based on a time-weighted performance index.
However, ripple-free behaviour is not considered in that work.
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1 In this paper we work in discrete-time. Therefore integration must be

interpreted as a cumulative sum.

This article deals with the design of controllers that, for
step references, achieve ripple-free deadbeat (RFDB) control for
sampled-data plants and, at the same time, minimize the time-
weighted cost function

J = λJe + (1 − λ)Ju, (1)

where λ ∈ [0; 1] is a weighting parameter, and

Je =

∞−
k=0

ke(k)2, Ju =

∞−
k=0

(u(k) − uss)
2. (2)

In (2), e(k)denotes the tracking error,u(k) the control input, anduss
the steady-state value of u(k). Due to the timeweighting of e(k), we
have that, for Je to become small, the tracking error must converge
to zero rapidly. This property suggests that the unconstrained
optimization of Je will have a negative impact on the control effort.
The presence of Ju allows one to dealwith that problemby choosing
an appropriate value for λ.

Themain contribution of this article is finding the optimal RFDB
controller that minimizes the index J in (1). A numerical example
is provided to illustrate our results.

2. Ripple-free deadbeat control

Deadbeat is a well-known technique for the design of discrete-
time control systems, whose purpose is to perfectly track a
reference in the minimum number of sampling periods (see,
e.g., Emami-Naein & Franklin, 1982; Goodwin, Graebe, & Salgado,
2001; Salgado, Oyarzún, & Silva, 2007). The number of sampling
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Fig. 1. Standard one-degree-of-freedom sampled-data control loop.

times required for the tracking error to converge to zero is
known as the deadbeat horizon. In the context of sampled-data
systems, deadbeat control should avoid intersample ripple in
the continuous-time output of the plant. This requirement has
motivated the development of techniques for designing RFDB
controllers (see, e.g., Casavola, Mosca, & Zecca, 1999; Nobuyama,
1993; Paz, 1999). The optimal design of RFDB controllers has been
already addressed using l∞, l1, and H2 norms (see, e.g., Casavola
et al., 1999; Salgado & Oyarzún, 2007; Salgado et al., 2007).

Fig. 1 shows the sampled-data control loop considered in this
paper. The goal is to track a step reference r(k) = vµ(k), achieving
yc(t) = v, ∀t ⩾ η∆, and a control signal such that u(k) = uss
(a constant), ∀k ⩾ η. Here, η ∈ N0 is the deadbeat horizon. For
simplicity, v = 1 is assumed. The continuous-time model of the
plant is assumed to have the form Gc(s) =

Bc (s)
Ac (s)

e−sτ , with τ ⩾ 0,
where Bc(s) and Ac(s) are coprime polynomials in s. The sampled
data representation of Gc(s), using a zero-order hold, is given by
G(z) =

B(z)
A(z) , where B(z) and A(z) are coprime polynomials in

z of degrees n and m, respectively, with n ⩾ m. Without loss of
generality, we assume that B(1) = 1. On the other hand, A(z) is
factorized as A(z) = A+(z)A−(z), where the polynomial A+(z), of
degree n+, contains all roots of A(z) in {z ∈ C : |z| ≥ 1}, while
A−(z), of degree n−, contains all roots in {z ∈ C : |z| < 1}.

To achieve an RFDB response, it is necessary that the
synthesized controller does not cancel the minimum-phase zeros
of G(z) (Goodwin et al., 2001; Salgado et al., 2007). The solution
to the problem thus requires that the complementary sensitivity
T (z) and the control sensitivity Su(z) are finite impulse response
(FIR) transfer functions of order η (Karybakas & Barbargires,
1994; Sirisena, 1985). This ensures that both e(k) and u(k) settle
to constant values in the specified deadbeat horizon. Also, by
requiring that T (1) = 1, we guarantee zero steady-state error. On
the other hand, theminimumdeadbeat horizon to get RFDB control
is given by ηmin = n + n+ (Nobuyama, 1993), and, hence, any
arbitrary horizon can be written as η = ηmin + ℓ, with ℓ ∈ N0.
When ℓ = 0, there exists only one controller, say Co(z), providing
an RFDB response. That controller satisfies

A(z)Lo(z) + B(z)Po(z) = zηminA−(z), (3)

where Co(z) = Po(z)/Lo(z) is biproper with Lo(z) of order n such
that Lo(1) = 0. Note from (3) that Po(z) = P̃o(z)A−(z), with
P̃o(1) = 1. It is known that every stabilizing RFDB controller C(z)
can be written as Salgado et al. (2007)

C(z) =
Po(z) + X(z)A(z)
Lo(z) − X(z)B(z)

, (4)

whereX(z) is an FIR transfer function of order ℓ such thatX(1) = 0.
Thus, X(z) = (z − 1)D̃(z)z−ℓ, where D̃(z) is a polynomial of order
ℓ − 1 or less. The optimal design of an RFDB controller amounts to
finding the polynomial D̃(z) that minimizes J .

3. Optimal designs

This section presents a technique to design optimal controllers
using the index defined in (1). By using Parseval’s theorem Good-
win et al. (2001), we can write Je and Ju in (2) as follows:

Je = −
1

2π j


dE(z)
dz

E(z−1)dz, (5)

Ju =
1

2π j


1
z
F(z)F(z−1)dz, (6)

where E(z) = S(z)R(z) is the Z transform of the tracking error,
and F(z) = Su(z)R(z) − uss

z
z−1 is the Z transform of u(k) − uss.

Furthermore, given that r(k) = µ(k), we can proceed as in Salgado
et al. (2007) to write E(z) = Me(z) − Ne(z)D̃(z) and F(z) =

Mu(z) − Nu(z)D̃(z), where

Me(z) =
zηmin − B(z)P̃o(z)
zηmin−1(z − 1)

=

ηmin−1−
i=0

meiz
−i, (7)

Ne(z) =
B(z)A+(z)

zη−1
=

η−1−
i=0

neiz
−i, (8)

Mu(z) =
A(z)P̃o(z) − A(1)zηmin

zηmin−1(z − 1)
=

ηmin−1−
i=0

muiz
−i, (9)

Nu(z) = −
A(z)A+(z)

zη−1
=

η−1−
i=0

nuiz
−i, (10)

and mei , nei ,mui , and nui are real coefficients (note that P̃o(1) = 1,
B(1) = 1, and m ⩽ n implies that Me(z), Ne(z), Mu(z), and
Nu(z) are FIR transfer functions). To further simplify the problem
formulation, we define

ζ(z) ,

z0 · · · zℓ−1

T
, d̃ ,


d̃0 · · · d̃ℓ−1

T
. (11)

Given that D̃(z) = ζ(z)T d̃, the problem of finding the optimal
polynomial D̃(z) reduces to finding the optimal vector of
coefficients d̃. The costs Je and Ju can be written as functions of d̃,
as

Je(d̃) = Te − d̃T
· Ke + d̃T

· Le · d̃, (12)

Ju(d̃) = Tu − d̃T
· Ku + d̃T

· Lu · d̃, (13)

where Te, Tu ∈ R,Ke,Ku ∈ Rℓ×1, and Le, Lu ∈ Rℓ×ℓ are given by

Te = −
1

2π j


dMe(z)

dz
Me(z−1)dz, (14)

Tu =
1

2π j


1
z
Mu(z)Mu(z−1)dz, (15)

Ke = −
1

2π j

 
Me(z−1)

d [Ne(z)ζ(z)]
dz

+
dMe(z)

dz
Ne(z−1)ζ(z−1)


dz, (16)

Ku =
1

2π j


1
z
(Mu(z)Nu(z−1)ζ(z−1)

+Mu(z−1)Nu(z)ζ(z))dz, (17)

Le = −
1

2π j


d[ζ(z)Ne(z)]

dz
Ne(z−1)ζ(z−1)Tdz, (18)

Lu =
1

2π j


1
z
ζ(z)Nu(z)Nu(z−1)ζ(z−1)Tdz. (19)
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