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Abstract

To apply time-varying port-controlled Hamiltonian (PCH) systems to practical control designs, two basic problems should be dealt with:
one is how to provide such time-varying systems a geometric structure to guarantee the completeness of representations in mathematics;
and the other is how to express the practical system under consideration as a time-varying PCH system, which is called the dissipative
Hamiltonian realization problem. The paper investigates the two basic problems. A suitable geometric structure for time-varying PCH
systems is proposed first. Then the dissipative realization problem of time-varying nonlinear systems is investigated, and serval new
methods and sufficient conditions are presented for the realization.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, time-invariant port-controlled Hamilto-
nian (PCH) systems have been well investigated (see, e.g.,
van der Schaft, 1999; Nijmeijer & van der Schaft, 1990;
Maschke, Ortega, & van der Schaft, 2000; Ortega,
van der Schaft, Maschke, & Escobar, 2002; Escobar,
van der Schaft, & Ortega, 1999). The Hamiltonian function
in a PCH system is considered as the total energy, which
is the sum of potential and kinetic energies in mechanical
systems, and it can play the role of Lyapunov function
for the system. Because of this, based on time-invariant
PCH systems, various effective controllers have been de-
signed for many control problems (see, e.g.,Shen, Ortega,
Lu, Mei, & Tamura, 2000; Wang, Cheng, Li, & Ge, 2003;
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Xi & Cheng, 2000). However, for some practical systems the
time-invariant PCH structure does not easily apply and its
time-varying form is really needed. Please see the following
example.

Example 1. Consider a single-machine infinite-bus power
system (Lu & Sun, 1993):
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wherew1 andw2 are disturbances,� is the power angle,
� the rotor speed,E′

q the q-axis internal transient voltage,
uf the control input, andVs the infinite-bus voltage. As
for other parameters, please refer toLu and Sun (1993). In
the case that all the parameters are constant, we can use
the time-invariant PCH structure to design an effective con-
troller to attenuate the disturbancesw1 andw2 (Xi & Cheng,
2000). But as well known, in power systems there are al-
ways uncertainties caused by load-level variations, faults, or
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changes of network structure, etc. When a parameter of the
above system is affected by a time-varying signal, say,Vs is
affected by a sine signal sint , the time-invariant structure
is no longer valid for the system. In this case, to design
an effective energy-based controller, the time-varying PCH
structure is really needed.

Therefore, it is necessary to develop the theory of time-
varying PCH systems for some practical control problems.
Recently, time-varying PCH systems have been studied by
Fujimoto and Sugie (2001a,b), Fujimoto, Sakurama, and
Sugie (2003)andCheng (2002). It is worth noticing that
Fujimoto et al. (2003)set up a very important way to the
trajectory tracking control of time-varying PCH systems via
generalized canonical transformations, whose key idea was
to preserve the structure of PCH systems under both coordi-
nate and feedback transformations.At present, in order to ap-
ply time-varying PCH systems to practical control designs,
two basic problems should be dealt with: one is how to de-
fine a geometric structure on a manifold for such systems to
guarantee the completeness of representations in mathemat-
ics; and the other is how to express the practical system un-
der consideration into a time-varying PCH system. The latter
is the so-called dissipative Hamiltonian realization problem.
This paper investigates the above-mentioned two prob-

lems. First, by defining a time-varying generalized Poisson
bracket, we provide a geometric structure for time-varying
PCH systems. Then, we deal with the dissipative Hamilto-
nian realization of time-varying nonlinear systems, and pro-
pose some new methods and sufficient conditions for the
realization.
The rest of the paper is organized as follows. Section 2

briefly reviews the classical Poisson structure, and Section 3
provides the geometric structure for time-varying PCH sys-
tems. In Section 4, we deal with the dissipative Hamiltonian
realization problem, which is followed by the conclusion in
Section 5.

2. A brief review of Poisson structure

This section briefly reviews the classical Poisson structure
with Lie algebraic properties, which will motivate the next
section of the paper.
In order to define a Hamiltonian system on a manifold,

one should equip the manifold with a suitable geometric
structure first. LetM be a smooth manifold andC∞(M)

be the set of smooth functions onM. A Poisson bracket
onM, denoted by{·, ·}, is a map:C∞(M)×C∞(M) �−→
C∞(M), satisfying (Ortega & Planas-Bielsa, 2004; Olver,
1993):

(i) Bilinearity:

{aF + bG,H } = a{F,H } + b{G,H },
{F, aG + bH } = a{F,G} + b{F,H };

(ii) skew-symmetry:{F,H } = −{H,F };
(iii) Jacobian identity:

{{F,G}, H } + {{G,H }, F } + {{H,F },G} = 0; and

(iv) Leibniz’ rule: {F,HG} = {F,H }G + H {F,G},
where∀F,G,H ∈ C∞(M), ∀a, b ∈ R1. Obviously, the
Poisson bracket defines a Lie algebra structure on the al-
gebraC∞(M) (Ortega & Planas-Bielsa, 2004). The pair
(M, {·, ·}) is called a Poisson manifold, and the bracket de-
fines a Poisson structure onM.
AssumeH ∈ C∞(M) is an arbitrary smooth function.We

defineXH := {·, H }, which is called a Hamiltonian vector
field. Systemẋ=XH is called a Hamiltonian system defined
onM, andH is its Hamiltonian function.
It should be pointed out that the manifoldM used here

does not need to be an even-dimensional one, for the Pois-
son bracket defined above has dropped the property of non-
degeneracy (Libermann & Marle, 1986).
In recent years, it has been well noticed that a weak-

ening of the defining conditions of the Poisson bracket is
sometimes a necessary and useful way to accommodate the
description of more general dynamical systems (Ortega &
Planas-Bielsa, 2004; van der Schaft, 1999; Olver, 1993).
Motivated by this, in the next section we will provide a ge-
ometric structure for time-varying PCH systems.

3. Geometric structure for time-varying PCH systems

This section is to provide a geometric structure for time-
varying PCH systems. First, we give the concept of time-
varying generalized Poisson brackets, and then, we present
the geometric structure for time-varying PCH systems.

Definition 1. LetM be ann-dimensional manifold and time
t ∈ R+ := [0,∞). A time-varying generalized Poisson
bracket (GPB), denoted by{·, ·}t , is a map:C∞(M×R+)×
C∞(M × R+) �−→ C∞(M × R+), satisfying

(i) Bilinearity:

{aF(x, t) + bG(x, t),H(x, t)}t
= a{F(x, t),H(x, t)}t + b{G(x, t),H(x, t)}t ,

{F(x, t), aG(x, t) + bH(x, t)}t
= a{F(x, t),G(x, t)}t + b{F(x, t),H(x, t)}t ; (1)

(ii) Leibniz’ rule:

{F(x, t),G(x, t)H(x, t)}t
= {F(x, t),G(x, t)}tH(x, t)

+ G(x, t){F(x, t),H(x, t)}t ,
{F(x, t)G(x, t),H(x, t)}t

= {F(x, t),H(x, t)}tG(x, t)

+ F(x, t){G(x, t),H(x, t)}t , (2)
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