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Abstract

Since the proposal of subspace methods in the 1980s and early 1990s substantial efforts have been made in the analysis of the statistical
properties of the algorithms. This paper surveys the literature on the asymptotic properties of particular subspace methods used for linear,
dynamic, time invariant, discrete time systems. The goals of this paper are threefold: First this survey tries to present the most relevant
results on the asymptotic properties of estimators obtained using subspace methods. Secondly the main methods and tools that have been
used in the derivation of these results are presented to make the literature more accessible. Thirdly main unsolved questions and rewarding
research topics are identified some of which can be attacked using the toolbox discussed in the paper.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the seminal survey ofViberg (1995)on subspace
methods for the identification of linear dynamic models the
literature on subspace methods has grown substantially. The
development can be very coarsely divided into four direc-
tions of research (without any particular ordering)

(1) Extensions of the basic underlying idea to different
model classes.

(2) Development of algorithms for online applicability and
monitoring purposes.

(3) Application of the methods.
(4) Analysis of the asymptotic properties of the estimators.

Each of these topics would warrant a separate survey paper.
In this paper I will focus on the fourth topic. In particular
the scope is constrained to the case of linear, dynamical,
time invariant, discrete time systems since this to the best of
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my knowledge is the only class of models where the asymp-
totic properties of the algorithms have been investigated to
a certain extent.
In order to survey asymptotic properties of subspace

methods it is necessary to make the definition of the meth-
ods under investigation more concrete. The termsubspace
methodsunfortunately is used for a wide variety of quite
different algorithms. All subspace methods are formulated
in the state space framework for modelling the dependence
of some measured output process(yt )t∈Z whereyt ∈ Rs ,
on an observed input process(ut )t∈Z where ut ∈ Rm,
and lagged values of the inputs and outputs. A common
feature of all model classes for which subspace methods
have been developed is that the vector of stacked outputs
yt+j , j = 0,1, . . . , f − 1, can be additively decomposed
into a linear function of then-dimensional statext , a pos-
sibly nonlinear function ofut+j , j = 0, . . . , f − 1 and a
noise component which according to the models is uncor-
related with the remaining two terms. This last term equals
the prediction errors of a prediction ofyt+j , j�0 based on
(ut )t∈Z andys, s < t , and the sum of the first two the mean
square predictions. The term ‘subspace’ then is motivated
from the fact that forf s >n the matrix describing the lin-
ear mapping relating then-dimensional state to the vector
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of predictions for the outputs(yt+j )j=0,...,f−1 (conditional
on known inputs) is of dimensionf s × n defining a sub-
space ofRf s via its column space. Also an alternative mo-
tivation for the termsubspace methodsexists: A particular
class of algorithms tries to estimate the state in the first step.
Interpreting least-squares predictions as projections of ran-
dom variables in an appropriately defined Hilbert space the
projections of(yt+j )j=0,...,f−1 given(ut+j )j=0,...,f−1 onto
the whole past of inputs and outputs span ann-dimensional
subspace providing another interpretation for the origin of
the term (for details cf.Picci & Katayama, 1996, and the
references therein).
The ways in which this dimensionality reduction to then-

dimensional subspace is exploited differ fundamentally for
the proposed algorithms, however, suggesting the consider-
ation of two classes of procedures, see below.1 This is true
even for the class of linear dynamical models analyzed in
this paper. InBauer (2003)for this model class a detailed
description of many of the most prominent algorithms pro-
posed in the literature is given. The differences between the
various proposed algorithms in many instances are minor
details which do not require additional tools for the analysis
of the asymptotic properties. In this survey hence it is not
attempted to obtain results for all different variants but we
will rather restrict attention to the main algorithms described
in detail below.
The plan of this paper is as follows: In the next section the

stochastic properties of the considered model class are dis-
cussed. Section 3 discusses in detail the subspace algorithms
that are dealt with in this paper. Subsequently consistency
of the various estimators is investigated in Section 4 and
questions of asymptotic bias are discussed. Section 5 deals
with asymptotic normality and examines expressions for the
asymptotic variance under the assumption of correctly spec-
ified order of the system. Order estimation techniques are
described in Section 6. Topics related to closed-loop oper-
ation conditions are briefly discussed in Section 7. Finally
Section 8 concludes the paper.
The general style of presentation is intended to be ac-

cessible for postgraduate students with some background in
statistics. This implies that especially the discussion of the
model set is lengthier than otherwise required.
Throughout the paper the following notation will be

used:‖X‖ denotes the two norm of the matrixX or the
Euclidean norm of the vectorX, respectively. By→ we
denote convergence in probability if not stated explicitely
otherwise. A.s. will abbreviatealmost sure. For a sequence
of random matricesFT the notationFT = o(gT ) means that
‖FT ‖/gT → 0 a.s.,FT = O(gT ) means that there exists a
constantM<∞ such that lim supT→∞ ‖FT ‖/gT �M a.s.
oP (gT ) and OP (gT ) denote the corresponding in proba-
bility versions.X′ will denote the transpose of a matrix or
a vector andX>0 means that the symmetric matrixX is

1 This point of view does not seem to be widely accepted in the
community.

positive definite. An eigenvalue of maximum modulus of a
matrixA will be denoted as�max(A).

2. State space systems

Subspace algorithms have been proposed for a number
of different model classes. However, in this paper only the
leading case of linear, time invariant, discrete time systems
of the form (fort ∈ Z)

xt+1 = Axt + But +Kεt ,

yt = Cxt +Dut + εt (1)

where the output datayt ∈ Rs and the input dataut ∈ Rm are
observed fort=1, . . . , T will be dealt with. Here(xt )t∈Z de-
notes the state sequence and(εt )t∈Z the unobserved (weak)
white noise. The noiseεt and the inputus are assumed to
be independent for allt, s ∈ Z, i.e. (with the exception of
Section 7) only open-loop operation conditions will be con-
sidered.A ∈ Rn×n, B ∈ Rn×m, C ∈ Rs×n, D ∈ Rs×m
andK ∈ Rn×s are the matrices to be estimated. Addition-
ally the innovation variance�=Eεt ε

′
t needs to be estimated.

Throughout the paper the system will be assumed to be sta-
ble, i.e. |�max(A)|<1 will be assumed. Furthermore, the
strict minimum-phase condition|�max(A−KC)|<1 will be
imposed.
The following material provides a crash course to linear

state space modelling. A more extensive account of the sub-
ject can be found in Chapters 1 and 2 ofHannan and Deistler
(1988)or in Chapter 4 ofLjung (1999). Subspace methods
are inherently using black box modeling, i.e. there is no spe-
cific knowledge about the system matrices(A,B,C,D,K)
exploited. LetSn denote the set of all quintuples of system
matrices(A,B,C,D,K) where the state isn dimensional
and where|�max(A)|<1 and |�max(A − KC)|<1 holds.
The system equations (1) imply that

yt = Cxt +Dut + εt

=C(Axt−1 + But−1 +Kεt−1)+Dut + εt

=CAt−1x1 +Dut + εt +
t−1∑
j=1

CAj−1[But−j +Kεt−j ]

=CAt−1x1 +
t−1∑
j=0

L(j)ut−j +
t−1∑
j=0

K(j)εt−j , (2)

whereL(j) ∈ Rs×m andK(j) ∈ Rs×s are the so-called
impulse response coefficients. This shows that apart from
initial effects (i.e.CAt−1x1) the state space system is only
a convenient way to represent the impulse response se-
quence. Two state space systems(A,B,C,D,K) ∈ Sn and
(Ã, B̃, C̃, D̃, K̃) ∈ Sñ are calledobservationally equiva-
lent if D = D̃ andCAj−1[B,K] = C̃Ãj−1[B̃, K̃], j ∈ N.
An equivalent way to describe observational equivalence



Download	English	Version:

https://daneshyari.com/en/article/10398875

Download	Persian	Version:

https://daneshyari.com/article/10398875

Daneshyari.com

https://daneshyari.com/en/article/10398875
https://daneshyari.com/article/10398875
https://daneshyari.com/

