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Abstract

A two-stage method for the identification of physical system parameters from experimental data is presented. The first stagecompresses
the data as an empirical model which encapsulates the data content at frequencies of interest. The second stage then uses data extracted
from the empirical model of the first stage within a nonlinear estimation scheme to estimate the unknown physical parameters. Furthermore,
the paper proposes use of exponential data weighting in the identification of partially unknown, unstable systems so that they can be
treated in the same framework as stable systems. Experimental data are used to demonstrate the efficacy of the proposed approach.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering systems of interest to the control engi-
neer arepartially knownin the sense that the system struc-
ture, together with some system parameters are known, but
some system parameters are unknown. This gives rise to a
problem ofparameter estimationwhen values for the un-
known parameters are to be determined from experimental
data comprising measurements of system inputs and out-
puts. There is a considerable literature in the area (An, Atke-
son, & Hollerbach, 1988; Canudas de Wit, 1988; Dasgupta,
Anderson, & Kaye, 1986; Gawthrop, Jones, & MacKenzie,
1992; Gawthrop, 2000a,b; Nagy & Ljung, 1991). Although,
in special cases, such identification may belinear-in-the pa-
rameters (An et al., 1988) or polynomial-in-the parameters
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(Gawthrop et al., 1992), in general the problem isnonlinear-
in-the parameters. This means that, in general, the resultant
optimisation problem is not quadratic or polynomial, and
may even be non-convex. In such cases, the optimisation
task is eased by knowing (rather than deducing numerically)
the derivative of the error function with respect to the un-
known system parameters. The generation of such sensitiv-
ity information is aided by the symbolic methods for non-
linear systems modelling, analysis and optimisation which
are currently strong research areas (Munro, 1999) driven by
the ready availability of symbolic computational tools. In
particular, the bond graph approach (Gawthrop & Smith,
1996; Karnopp, Margolis, & Rosenberg, 1990; Ljung &
Glad, 1994) has been used to generate models both applica-
ble to control design (Gawthrop, 1995; Gawthrop & Ronco,
2000) and partially-known system identification (Gawthrop,
2000a, 2003; Nagy & Ljung, 1991). Bond graph models are
used in all the examples of this paper, but are not discussed
further here.

Data acquisition systems typically yield large amounts of
discrete-time data. On the other hand, the aforementioned
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partially known systems are usually best expressed in
continuous-time differential equation form and, even with
these sensitivity function enhancements, use of the raw
data may lead to unacceptable computational times. Thus,
although it is, in principle, possible to use algorithms
for partially-known system identification directly on the
raw data, it is not practically useful. In addition, the raw
data may contain complex system disturbance information
which may require a sophisticated optimisation algorithm
to achieve desirable results.

In this paper, the authors propose a two-stage identifica-
tion procedure to extract physical parameters from discrete-
time data pertaining to partially known systems. The first
stage (which we call data compression) analyses the raw
data to obtain a parameter vector� describing an empirical
model obtained from the data. The second stage uses this em-
pirical model (parameterised by�) to generate continuous-
time data suitable for identifying physical parameters. Be-
cause the first stage is essentially a linear-in the parameter
problem, not only can large amounts of data be processed
rapidly, but also established system identification tools can
be used to obtain data-quality models (Ljung, 1999). Be-
cause the second stage uses a relatively short length of rel-
atively noise free data, the iteration time and convergence
properties are much improved compared to using the raw
data directly. The continuous time step response is used as
the empirical model as it has a transparent representation in
terms of gain, time delay and time constant and thus it is
widely accepted by engineers and practitioners. Other forms
of empirical model are also possible within this context. The
basic idea of a two-stage method is not new, see for example,
Ljung (1999, Section 10.4)andWang, Gawthrop, Chessari,
Podsiadly, and Giles (2004); our method is new in so far
as it uses the frequency sampling filter (FSF) approach for
the first stage and a physical model-based approach for the
second.

In order for the same framework to be applicable to un-
stable systems, this paper proposes the use of exponential
data weighting in the data compression procedure. This ex-
ponential weighting converts an unstable system into a sta-
ble system with the same unknown parameters to which the
two-stage approach is applicable.

The motivation for this work is to generate models suit-
able for model-based predictive control (Mayne, Rawlings,
Rao, & Scokaert, 2000; Rawlings, 2000), in particular
models suitable for continuous time methods, such as
those of Wang (2001)and Gawthrop and Ronco (2000,
2002).

The outline of the paper is as follows. Section 2 consid-
ers the FSF approach to data compression and extends the
procedure to cope with unstable systems. Section 3 consid-
ers physical parameter estimation and Section 4 considers
frequency-domain approaches. Section 5 gives illustrative
experimental results using data obtained from both electri-
cal and electro-mechanical systems. Section 6 concludes the
paper.

2. Data compression

The first stage of the two-stage process is data com-
pression: encapsulating the important features of the mea-
sured data into a few parameters within an empirical system
model. There are many possible empirical models available
including ARX (Ljung, 1999) and general basis-function
approaches (Ninness & Gustafsson, 1997; Wahlberg, 1991;
Wang & Cluett, 2000). In a fast-sampling environment, it is
known that discrete-time ARX models encounter numerical
ill-conditioning (Åström, Hagander, & Sternby, 1980) as the
sampling rate increases and the problem is worse for unsta-
ble systems. On the contrary, the FSF approach ofBitmead
and Anderson (1981), Wang and Cluett (1997, 2000), lies
between the continuous and discrete-time domains and the
coefficients converge to sampling-rate independent values.
This latter approach is discussed in Section 2.1 and extended
to unstable systems in Section 2.2.

2.1. Stable systems

The book byWang and Cluett (2000)gives a comprehen-
sive discussion of the FSF approach (including its relation
to the discrete Fourier transform); this section provides a
brief discussion of the material required for this paper. We
consider linear time-invariant continuous-time systems with
outputy(t) and inputu(t) uniformly sampled with time in-
terval� to give input and output sequencesyi = y(i�) and
ui = u(i�). In the time-domain, the input and output se-
quences are related byyi = gi ∗ ui wheregi is the discrete-
time system impulse response and∗ is the convolution op-
erator. In thez-transform domain,̄Y (z) = Ḡ(z)Ū(z) where
Ȳ andŪ are thez-transforms ofyi andui , respectively and
Ḡ the corresponding transfer function. In this section, it is
assumed that the system isstableand can be associated with
a settling timeT = N�; the time after which the system
impulse response is sufficiently small:|gi |〈� ∀i〉N .

The FSF approach approximates the transfer function
Ḡ(z) as

Ḡfsf(z) =
n−1

2∑
k=− n−1

2

�kH̄k(z), (1)

H̄k(z) = 1

N

1 − z−N

1 − ej�kz−1
, (2)

where n is odd and thefrequency sample interval� =
2�/T , H̄k(z) is thekth FSF and�k the corresponding (com-
plex) parameter. The name arises because thekth FSF has
a frequency response with a peak at� = k�. Fig. 1(a)
shows the superimposed frequency responses ofH̄k(z) for
0�k�4 whenT = 5 implying � = 1.26 for a frequency
range 0���10. The symbol “x” marks the frequency sam-
ples which coincide with the peaks of the FSFs. Thekth
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