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Abstract

In this paper, variance estimation and ranking methods are developed for stochastic processes modeled by Gaussian mixture distributions.
It is shown that the variance estimate from a Gaussian mixture distribution has the same properties as the variance estimate from a single
Gaussian distribution based on a reduced number of samples. Hence, well-known tools for variance estimation and ranking of single
Gaussian distributions can be applied to Gaussian mixture distributions. As an application example, we present optimization of sensor
processing order in the sequential multi-target multi-sensor joint probabilistic data association (MSJPDA) algorithm.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A popular performance metric used for evaluating track-
ing algorithms is the root mean square (RMS) position er-
ror computed from a variance estimate based on data gen-
erated by the tracking algorithm (Frei & Pao, 1998; Pao &
Trailović, 2000; Trailović & Pao, 2001, 2004). It has been
shown that the position error distribution ismuch better mod-
eled usingmixturesof Gaussians rather than a single Gaus-
sian (Trailović, 2002). Estimation and ranking of variances
in stochastic processes that generate data with Gaussian dis-
tributions are based on well-known properties of the�2 and
F-distributions (Devore, 2003; Hoel, 1962). The purpose of
this paper is to develop the tools for variance estimation and
ranking of Gaussian mixture distributions.
The paper is organized as follows. Variance estima-

tion for Gaussian mixture distributions is discussed in
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Section 2, including derivations of the moment generating
function and the probability density function. Section 3 ad-
dresses the Gaussian mixture variance ranking. As an appli-
cation example, we present selection of the optimum order of
sensor processing in the sequential multi-sensor joint prob-
abilistic data association (MSJPDA) target tracking algo-
rithm (Bar-Shalom & Fortmann, 1998; Bar-Shalom & Tse,
1975; Frei & Pao, 1998; Pao, 1994; Pao & Trailovi´c, 2000;
Trailović, 2002). The results are summarized in Section 4.

2. Variance distribution for Gaussian mixtures

A k-component Gaussianmixture pdf of a random variable
x is

fk(x) =
k∑

j=1

wj�(x; mj ,�j ), (1)

where �(x; mj ,�j ) is a Gaussian pdf with meanmj

and standard deviation�j and wj are weights satisfying∑k
j=1wj = 1, wj �0. We consider a class of zero-mean

Gaussian mixture distributions withmj = 0, j = 1, . . . , k.
Such distributions can be used to model the position error
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in target tracking algorithms (Trailović, 2002). For the zero-
mean Gaussian mixtures, the variance�2eq is

�2eq=
k∑

j=1

wj�2j . (2)

Given a sample set{e1, . . . , en}, the unbiased variance esti-
mator is

�̂2eq= 1

n − 1

n∑
i=1

e2i . (3)

When samples originate from a single Gaussian distribution,
the tools for variance estimation and ranking are based on
properties of the�2 and theF-distributions (Devore, 2003;
Hoel, 1962). Our objective is to develop similar tools for
data originating from ak-component zero-mean Gaussian
mixture distribution.
Following the derivation for the�2 distribution outlined

in Hoel (1962), let us define a random variable

εn =
n∑

i=1

x2i , (4)

wherexi is a zero-meank-component Gaussian mixture ran-
dom variable with the pdf in (1). Further, letgkn(x; n) be
the pdf of the random variableεn having ak-component “�2-
mixture” distribution withn degrees of freedom (i.e., mea-
surements or samples) (Devore, 2003; Hoel, 1962). The
scaled random variable

ε = 1

n − 1
εn (5)

produces the unbiased variance estimator (3). With the
change of variables (5), the objective is to find the density

gk(x; n) = (n − 1)gkn((n − 1)x; n). (6)

2.1. Moment generating function (mgf)

A pdf is uniquely determined by its moment generating
function when it exists (Hoel, 1962). The mgf of the random
variableεn is defined as

Mεn(s) = E[esεn ] =
∫ ∞

−∞
esxgkn(x; n)dx, (7)

whereE[·] is the expectation of the random variable. Substi-
tuting (4), wherexi are independent random variables with
the same zero-meank-component Gaussian mixture pdf, we
have

Mεn(s) = E[es
∑n

i=1 x
2
i ] =

n∏
i=1

E[esx2i ] = (E[esx2])n

= (Mx2(s))
n, (8)

Mx2(s) =
∫ ∞

−∞
esx

2
k∑

j=1

wj�(x; 0,�j )dx

=
k∑

j=1

wj

∫ ∞

−∞
esx

2


 1√

2��j
e
− x2

2�2
j


 dx

=
k∑

j=1

wj(1− 2�2j s)
−1/2. (9)

Combining (8) and (9) yields

Mεn(s)=

 k∑

j=1

wj(1−2�2j s)
−1/2



n

=

 k∑

j=1

wjMj



n

. (10)

For k = 1, w1 = 1, and�1 = �eq= 1, the mgf (10) reduces
to the mgf of the�2 distribution (Hoel, 1962),

Mεn(s)|k=1 = M�2(s) = (1− 2s)−n/2, (11)

with the corresponding density

g1n(x; n) = x(n/2)−1e−x/2

2n/2�(n/2)
. (12)

Unfortunately, fork >1, a closed-form solution for the pdf
corresponding to the given mgf (10) is not known.

2.2. �2-mixture distribution for large n

Without loss of generality, we assume that the standard
deviation (2) of the zero-meanmixture is normalized to�eq=
1. By the central limit theorem, the pdf of a sum ofn random
variables converges to a Gaussian pdf for largen. The mean
m and the variance�2 can be found from the mgfM(s) as
(Hoel, 1962)

m = M ′(s)|s=0 = M ′(0), (13)

�2 = M ′′(s)|s=0 − m2 = M ′′(0) − m2, (14)

whereM ′(s) andM ′′(s) are the derivatives ofM(s) with
respect tos. Applying (13) and (14) to (11), we conclude
that the�2 pdf with n degrees of freedom converges to the
Gaussian pdf

g1n(x; n) n?1−→ �(x; m�1,��1) (15)

with the meanm�1 =n and the variance�2�1 =2n. Therefore,

by the change of variables (5), the scaled�2 pdf converges
to the Gaussian pdf

g1(x; n) n?1−→ �

(
x; 1,

√
2

n

)
. (16)

Similarly, applying (13) and (14) to (10), we find that the
scaled�2-mixture densitygk(x; n) converges to the Gaus-
sian pdf

gkn(x; n) n?1−→ �(x; m�k ,��k ) (17)
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