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Abstract

In this paper we study the solution to optimal control problems for constrained discrete-time linear hybrid systems based on quadratic
or linear performance criteria. The aim of the paper is twofold. First, we give basic theoretical results on the structure of the optimal
state-feedback solution and of the value function. Second, we describe how the state-feedback optimal control law can be constructed by
combining multiparametric programming and dynamic programming.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent technological innovations have caused a consider-
able interest in the study of dynamical processes of a mixed
continuous and discrete nature, denoted as hybrid systems.
In their most general form hybrid systems are characterized
by the interaction of continuous-time models (governed by
differential or difference equations), and of logic rules and
discrete event systems (described, for example, by temporal
logic, finite state machines, if-then-else rules) and discrete
components (on/off switches or valves, gears or speed se-
lectors, etc.). Such systems can switch between many op-
erating modes where each mode is governed by its own
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characteristic dynamical laws. Mode transitions are triggered
by variables crossing specific thresholds (state events), by
the lapse of certain time periods (time events), or by external
inputs (input events) (Antsaklis, 2000). A detailed discus-
sion of different modeling frameworks for hybrid systems
that appeared in the literature goes beyond the scope of this
paper; the main concepts can be found inAntsaklis (2000),
Branicky, Borkar, and Mitter (1998), Bemporad and Morari
(1999), Lygeros, Tomlin, and Sastry (1999).

Different methods for the analysis and design of con-
trollers for hybrid systems have emerged over the last few
years (Sontag, 1981; Lygeros et al., 1999; Bemporad &
Morari, 1999). Among them, the class of optimal controllers
is one of the most studied. The approaches differ greatly in
the hybrid models adopted, in the formulation of the optimal
control problem and in the method used to solve it.

In this paper we focus on discrete-time linear hybrid
models. In our hybrid modeling framework we allow (i)
the system to be discontinuous, (ii) both states and inputs
to assume continuous and discrete values, (iii) events to be
both internal, i.e., caused by the state reaching a particular
boundary, and exogenous, i.e., forced by a switch to some
other operating mode, and (iv) states and inputs to fulfill
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linear constraints. We will focus on discrete-time piecewise
affine (PWA) models. Discrete-time PWA models can de-
scribe a large number of processes, such as discrete-time lin-
ear systems with static piecewise-linearities; discrete-time
linear systems with discrete states and inputs; switching sys-
tems where the dynamic behavior is described by a finite
number of discrete-time linear models together with a set of
logic rules for switching among these models; approxima-
tion of nonlinear discrete-time dynamics, e.g., via multiple
linearizations at different operating points.

In discrete-time hybrid systems an event can occur only at
instants that are multiples of the sampling time, and many in-
teresting mathematical phenomena occurring in continuous-
time hybrid systems such as Zeno behaviors do not exist.
However, the solution to optimal control problems is still
complex: the solution to the HJB equation can be discontin-
uous and the number of possible switches grows exponen-
tially with the length of the horizon of the optimal control
problem. Nevertheless, we will show that for the class of
linear discrete-time hybrid systems we cancharacterizeand
computethe optimal control law exactlywithout gridding
the state space.

The solution to optimal control problems for discrete-time
hybrid systems was first outlined bySontag (1981). In his
plenary presentation (Mayne, 2001) at the 2001 European
Control Conference, Mayne presented an intuitively appeal-
ing characterization of the state-feedback solution to opti-
mal control problems for linear hybrid systems with per-
formance criteria based on quadratic and linear norms. The
detailed exposition presented in the initial part of this pa-
per follows a similar line of argumentation and shows that
the state-feedback solution to the finite time optimal control
problem is a time-varying PWA feedback control law, pos-
sibly defined over non-convex regions. Moreover, we give
insight into the structure of the optimal state-feedback solu-
tion and of the value function.

In the second part of the paper we describe how the op-
timal control law can be efficiently computed by means of
multiparametric programming. In particular, we propose a
novel algorithm that solves the Hamilton–Jacobi–Bellman
equation by using a simple multiparametric solver. In collab-
oration with different companies and institutes, the results
described in this paper have been applied to a wide range of
problems (Baotic, Vasak, Morari, & Peric, 2003; Bemporad,
Borodani, & Mannelli, 2003; Bemporad, Giorgetti, Kol-
manovsky, & Hrovat, 2002; Bemporad & Morari, 1999;
Borrelli, Bemporad, Fodor, & Hrovat, 2001; Ferrari-Trecate
et al., 2002; Mignone, 2002; Möbus, Baotic, & Morari, 2003;
Torrisi & Bemporad, 2004). Simple examples that highlight
the main features of the hybrid system approach presented
in this paper can be found inBorrelli, Baotic, Bemporad,
and Morari (2003).

Before formulating optimal control problems for hy-
brid systems we will give a short overview on multipara-
metric programming and on discrete-time linear hybrid
systems.

2. Definitions and basic results

We will use the following non-standard definitions:

Definition 1. A polyhedron is a set that equals the intersec-
tion of a finite number of closed halfspaces. An open set
R whose closurēR is a polyhedron is called open polyhe-
dron. A “neither open nor closed polyhedron” is a neither
open nor closed setR whose closurēR is a polyhedron. A
non-Euclidean polyhedron is a set whose closure equals the
union of a finite number of polyhedra.

Definition 2. A collection of setsR1, . . . ,RN is apartition
of a set� if (i)

⋃N
i=1Ri = �, (ii) Ri ∩ Rj = ∅, ∀i �= j .

MoreoverR1, . . . ,RN is a polyhedral partitionof a poly-
hedral set� if R1, . . . ,RN is a partition of� and theR̄i ’s
are polyhedral sets, wherēRi denotes the closure of the set
Ri .

Definition 3. A function h : � → Rk, where� ⊆ Rs ,
is PWA if there exists a partitionR1, . . . ,RN of � and
h(�)=H i�+ ki , ∀� ∈ Ri , i = 1, . . . , N .

Definition 4. A function h : � → Rk, where� ⊆ Rs ,
is PWA on polyhedra(PPWA) if there exists a polyhedral
partitionR1, . . . ,RN of � andh(�)=H i�+ ki , ∀� ∈ Ri ,
i = 1, . . . , N .

Piecewise quadratic (PWQ) functions and piecewise
quadratic functions on polyhedra (PPWQ) are defined anal-
ogously.

Definition 5. A function q : �→ R, where� ⊆ Rs , is a
multiple quadratic functionof multiplicity d ∈ N+ if q(�)=
min{q1(�) � �′Q1�+ l1�+ c1, . . . , qd(�) � �′Qd�+ ld�+
cd}, Qi > 0, ∀i = 1, . . . , d and� is a convex polyhedron.

Definition 6. A function q : �→ R, where� ⊆ Rs , is a
multiple PWQ on polyhedra(multiple PPWQ) if there ex-
ists a polyhedral partitionR1, . . . ,RN of � and q(�) =
min{q1

i (�) � �′Q1
i �+l1i �+c1

i , . . . , q
di

i (�) � �′Qdi

i �+l
di

i �+
c

di

i }, ∀� ∈ Ri , i=1, . . . , N . We definedi to be the multiplic-

ity of the functionq in the polyhedronRi , andd=∑N
i=1 di

to be the multiplicity of the functionq. (Note that� is not
necessarily convex.)

3. Basics of multiparametric programming

Consider the nonlinear mathematical program dependent
on a parameter vectorx appearing in the cost function and
in the constraints

J ∗(x)= inf
z

f (z, x)

subj. tog(z, x)�0

z ∈ M, (1)
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