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Abstract

A novel robust algorithm to harmonic and interharmonic analysis based on support vector machines (SVM) and solved by iterative reweighted
least squares (IRWLS) algorithm to overcome the difficulty of exponential computation complexity, is proposed in the paper. It has a good
precision for analyzing harmonics and interharmonics without synchronized sampling that is essential for fast Fourier transform (FFT). By
introducing a specific loss function, the method can mitigate the infection of outliers and noises and exhibits robustness characteristics. Its
IRWLS-based implementation makes it efficient and suitable for harmonic and interharmonic analysis of electric power system. The case
studies showed its high precision and robustness of the SVM spectral analysis algorithm.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

With the increasing use of power electronics devices and
proliferation of nonlinear loads in electric power system,
the issue of harmonics pollution is becoming more and
more severe. For example, modern frequency power con-
verters generate a wide spectrum of harmonics components
comprising not only characteristic harmonics typical for
the ideal converter operation but also considerable amount
of noncharacteristic harmonics and interharmonics which
may strongly deteriorate the quality of the power supply
voltage. It is of great importance to accurately estimate
these harmonics component for the reliable and economical
operation of power system since it is the foundation to track
and solve this problem.

There are many different approaches for measuring har-
monics, including FFT[1], application of adaptive filters[2],
artificial neural networks[3], simulated annealing optimiza-
tion [4], Fuzzy linear regression[5], singular value decompo-
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sition[6], modern spectrum estimation[7], etc. Most of them
operate adequately only in the narrow range of frequencies
and at moderate noise levels. The FFT method suffers from
the major problem such as resolution, spectrum leakage and
picket-fence effects. Because of some invalid assumptions
(zero data or repetitive data outside the duration of observa-
tion) made in these methods, the estimated spectrum can be a
smeared version of the true spectrum. These methods usually
assume the only harmonics are present and the periodicity in-
tervals are fixed, while periodicity intervals in the presence
of interharmonics are variable and very long[8]. It is very
important to develop better tools of interharmonics estima-
tion to avoid possible damages due to its influence. Modern
spectrum estimation methods, such as Prony and min-norm,
using high-resolution methods and the estimation accuracy
in most cases is better than when using the Fourier algorithm,
but it is sensitive to noise and its computation is much more
complex than FFT. So it is significant to seek a harmonics
analysis method that is not only precise and robust (insensi-
tive to noise) but also has proper computation complexity.

A new method of harmonics analysis is drawn from sup-
port vector machines (SVM), which was first suggested
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to obtain maximum margin by separating hyperplanes in
classification[9], and it has been extended to the general
learning theory[10]. SVM provides efficient and powerful
classification algorithms that are capable of dealing with
high dimensional input features and with theoretical bounds
on the generalization error and sparseness of the solution
provided by statistical learning theory[9]. SVM has few
free parameters requiring tuning, is simple to implement,
and are trained through optimization of a convex quadratic
cost function, which ensures the uniqueness of the SVM
solution. Furthermore, SVM-based solutions are sparse in
the training date and are defined only by the most “infor-
mative” training points. SVM has been originally put for-
ward for pattern recognition, by the introduction of an al-
ternative loss function, it can also be applied to the lin-
ear, nonlinear regression problems. In[11], the standard
SVM regression algorithm is modified to provide an ade-
quate approach to nonparametric spectral analysis, which
is called the SVM-Spec formulation. SVM-Spec algorithms
are solved via quadratic programming (QP), whose time
demand grows exponentially with the length of the time
series, making them useless for most of the practical ap-
plication. An iterative reweighted least squares (IRWLS)
formulation that overcomes this limitation is proposed in
[12].

In the paper, this robust support vector (SV) algorithm is
introduced to analyze the harmonics and interharmonics in
electric power system. Case studies indicated its high preci-
sion and robustness.

2. SVM regression

SVM has become very popular for learning from experi-
mental data and solving various classification, regression and
density estimation problems. Initially developed for solv-
ing classification problems, support vector techniques can
be successfully applied to regression. The general regres-
sion learning problem is set as follow: the learning ma-
chine is givenl training from which it attempts to learn the
input–output relationship (dependency, mapping, or func-
tion) f(x). Considering a set of training data{(x1, y1), . . .,
(xl , yl)}, where eachxi ⊂Rn denotes the input space of
the sample and has a corresponding target valueyi ⊂R for
i = 1, . . ., l where l corresponds to the size of the train-
ing data. The idea of the regression problem is to deter-
mine a function that can approximate future values ac-
curately. The generic SVR estimation function takes the
form:

f (x) = (wΦ(x)) + b (1)

wherew⊂Rn, b⊂Rand� denotes a non-linear transforma-
tion fromRn to high dimensional space. The goal is to find
the value ofw andb such that values ofx can be determined

by minimizing the regression risk:

Rreg(f ) = C

l∑
i=1

Γ (f (xi) − yi) + 1

2
‖w‖2 (2)

where �(·) is a cost function,C is a pre-specified con-
stant which determines penalties to estimation errors. A
large C assigns higher penalties to errors so that the re-
gression is trained to minimize error with lower general-
ization while a smallC assigns fewer penalties to errors;
this allows the minimization of margin with errors, thus
higher generalization ability. Theε -insensitive loss func-
tion is the most widely used cost function. The function is
the form:

Γ (f (x) − y) =
{

|f (x) − y| − ε, for |f (x) − y| ≥ ε

0, otherwise
(3)

Thus, the loss is equal to zero if the difference between
the predictedf(x) and the measured value is less thanε.
Vapnik’s ε-insensitivity loss function (3) defines anε tube.
(Typical graph of a regression problem as well as relevant
mathematical objects required in learning unknown coef-
ficients wi are shown inFig. 1. If the predicted value is
within the tube the loss (error or cost) is zero. For all other
predicted points outside the tube, the loss equals the mag-
nitude of the difference between the predicted value and
the radiusε of the tube. Note that forε= 0, Vapnik’s loss
function equals a least modulus (a.k.a. Huber’s robust loss)
function.

This loss function is less sensitive to outliers than the
quadratic loss function used in least squares method and en-
ables a sparse set of support vectors to be obtained. In solving
regression problem, the SVM performs linear regression inn-
dimensional feature space usingε-insensitivity loss function.
At the same time, it tries to reduce model capacity by min-
imizing ||w||2, in order to ensure better generalization. All

Fig. 1. Parameters used in one-dimensional (1-D) SV regression.
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