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Abstract: State-dependent parameter representations of nonlinear stochastic sampled-
data systems are studied. Velocity-based linearization is used characterize sampled-
data systems using nominally linear models whose parameters can be represented as
functions of past outputs and inputs. For stochastic systems the approach leads to state-
dependent ARMAX (quasi-ARMAX) representations. The models and their parameters
are identified from input-output data using feedforward neural networks to represent the
model parameters as functions of past inputs and outputs. Copyright c© 2005 IFAC
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1. INTRODUCTION

A widely used approach for the black-box modelling
and identification of nonlinear dynamical systems is
to apply various nonlinear function approximators,
such as artificial neural networks or fuzzy models.
A shortcoming of these models is that they do not
provide much insight into the systems dynamics. For
this reason various model structures, which provide
such information, have been introduced. One general
class of models of this type consists of models with
a nominally linear structure, but with state-dependent
parameters (Priestley, 1988; Hu et al., 2001; Young et
al., 2001). An important class of state-dependent pa-
rameter models consists of ARX models, in which the
model parameters are nonlinear functions of past sys-
tem outputs and inputs. These models have been called
quasi-ARX (Hu et al., 1998; Hu et al., 2001; Previdi
and Lovera, 2001) or state-dependent ARX models
(Priestley, 1988; Young et al., 2001). State-dependent
parameter representations have the useful property
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that explicit information about the local dynamics is
provided by the locally valid linear model, and in
a number of situations they can be treated as linear
systems whose parameters are taken as functions of
scheduling variables.

For discrete-time systems, state-dependent parameter
representations are usually approximative descriptions
introduced for convenience. In contrast, continuous-
time systems can be represented exactly by state-
space models with state-dependent parameters con-
structed using velocity-based linearization (Leith and
Leithead, 1998b; Leith and Leithead, 1998a). This fact
can be applied to construct exact discrete-time state-
dependent parameter representations for sampled-data
systems (Toivonen, 2003). Quasi-ARX models of
sampled-data systems are obtained by reconstructing
the state of the state-dependent parameter represen-
tation in terms of past inputs and outputs (Toivonen,
2003).

In practice it is important to be able to deal with
systems which are subject to stochastic noise. It is
shown that a nonlinear sampled-data system subject
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to an additive drifting disturbance and measurement
noise can be represented by a quasi-ARMAX model.
By using a feedforward neural network to describe
the model parameters as functions of past inputs and
outputs (Hu and Hirasawa, 2002), the quasi-ARMAX
model is represented with a type of recurrent network.
Identification of neural network quasi-ARMAX mod-
els from input-output data is studied and illustrated
with numerical examples.

2. STATE-DEPENDENT PARAMETER MODELS
OF STOCHASTIC SYSTEMS

In a previous study (Toivonen, 2003), state-dependent
parameter representations were derived for determin-
istic nonlinear sampled-data systems. In this paper, a
generalization to stochastic systems is studied. Con-
sider a nonlinear system

ẋP(t) = fP(xP(t),u(t))

y(t) = hP(xP(t))+w(t) (1)

where xP(t) denotes the state vector, u(t) is the control
input and y(t) denotes the output. It is assumed that the
nonlinear functions fP(·, ·) and hP(·) are continuous
with Lipschitz continuous first derivatives. The system
is subject to an additive drifting disturbance w(t),
which is described by a Wiener process with the
incremental variance rw.

The continuous-time input u(t) to the nonlinear sys-
tem is generated from a discrete-time input ud(k) by
a zero-order hold and a strictly proper low-pass filter
with the state-space representation (AH ,BH ,CH). The
system input is thus generated according to

ẋH(t) = AHxH(t)+BHud(k), t ∈ (kh,kh+h]

u(t) = CHxH(t) (2)

where h denotes the sampling interval. The filter (2)
generates a continuous input u(t) to (1), which is
differentiable for all t, except possibly at the sampling
instants kh.

The sampled output is corrupted by measurement
noise,

ym(kh) = y(kh)+ em(k) (3)

which is described by a zero-mean white noise distur-
bance {em(k)} with the variance σ 2

m.

Although a more realistic and complex disturbance
model could be used, one reason for focusing on the
model (3) is that it allows the construction of an exact
quasi-ARMAX representation. It is therefore possible
to compare identified models with the theoretically
correct system description. It is also believed that the
combination of a drifting disturbance and measure-
ment noise provides a good approximation of more
complex disturbances as well.

The generalized system consisting of the filter (2),
the nonlinear system (1) and the disturbance model
(3) can be described by a nonlinear system with a
piecewise constant input,

ẋ(t) = f (x(t))+Bud(k), t ∈ (kh,kh+h]

y(t) = h(x(t))+w(t) (4)

ym(kh) = y(kh)+ em(k)

where x = [xT
P ,xT

H ]T is the state of the generalized
system, and

f (x) =

[

fP(xP,CHxH)
AHxH

]

, B =

[

0
BH

]

h(x) = hP(xP) (5)

Differentiation of (4) with respect to time gives a
nonlinear system with jumps,

ẍ(t) = A(x(t))ẋ(t), t 6= kh

x(kh+) = ẋ(kh)+BD ud(k) (6)

dy(t) = C(x(t))dx(t)+dw(t)

where the notation x(kh+) = limε ↓0 x(kh+ ε ) has been
used, D ud(k) = ud(k)−ud(k−1) and

A(x) =
¶ f (x)

¶ x
, C(x) =

¶ h(x)
¶ x

(7)

Integration of (6) over the sampling intervals gives
(Toivonen, 2003)

ẋ(kh+h) = F(x(kh),ud(k))ẋ(kh)

+G(x(kh),ud(k))D ud(k)

D y(kh+h) = H(x(kh),ud(k))ẋ(kh) (8)

+J(x(kh),ud(k))D ud(k)+ ew(k +1)

where D y(kh+h) = y(kh+h)−y(kh) and ew(k+1) =
w(kh + h)−w(kh). Hence {ew(k)} is a discrete-time
white noise sequence with variance σ 2

w = rwh. The
matrices F(·, ·), G(·, ·), H(·, ·) and J(·, ·) are smooth
functions given by

F(x(kh),ud(k)) = F (kh+h) (9)

H(x(kh),ud(k)) = F y(kh+h) (10)

and G(·, ·) = F(·, ·)B, J(·, ·) = H(·, ·)B, where F (·)
and F y(·) are defined by the differential equations

dF (t)
dt

= A(x(t))F (t), F (kh) = I (11)

dF y(t)
dt

= C(x(t))F (t), F y(kh) = 0 (12)

where x(t) is given by (4).

The parameters of (8) are functions of the system state.
In order to construct a model using input-output data
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