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Abstract: This paper explores the robustness issues that arise in the identi¯cation
of continuous-time systems from sampled data. A key observation is that, in
practice, one cannot rely upon the ¯delity of the model at high frequencies. This
implies that any result which implicitly or explicitly depends upon the folding
of high frequency components down to lower frequencies will be inherently non-
robust. We illustrate this point by referring to the identi¯cation of continuous-time
auto-regressive stochastic models from sampled data. We argue that traditional
approaches to this problem are sensitive to high frequency modelling errors.
We also propose an alternative maximum likelihood procedure in the frequency
domain, which is robust to high frequency modelling errors.
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1. INTRODUCTION

Identi¯cation of continuous-time systems is a
problem of considerable importance in various
disciplines such as economics, control, fault detec-
tion and signal processing. In recent years, there
has been an increased interest in the problem
of identifying continuous-time models (Rao and
Garnier, 2002; Garnier et al., 2003; Ljung, 2003).
Even though it is theoretically possible to carry
out system identi¯cation using continuous-time
data (Young, 1981; Unbehauen and Rao, 1990),
this will generally involve analogue operators to
emulate time derivatives and will thus usually be
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impractical. Thus, one is usually forced to work
with sampled data (Sinha and Rao, 1991; Pintelon
and Schoukens, 2001). In this context, one might
hope that if one samples quickly enough then
the di®erence between discrete and continuous
processing would be vanishing small. There are
indeed many cases which support this hypothe-
sis — see, for example, (Middleton and Good-
win, 1990; Feuer and Goodwin, 1996; Goodwin
et al., 2001).

The above discussion can, however, lead to a false
sense of security when using sampled data. A well
known instance where naive use of sampled data
can lead to erroneous results is in the identi¯ca-
tion of continuous-time stochastic systems where

Copyright (c) 2005 IFAC. All rights reserved
16th Triennial World Congress, Prague, Czech Republic

 237



the noise model has relative degree greater than
zero. In the latter case, it has been shown in
(Wahlberg, 1988) that the sampled data model
will have sampling zeros. These are the stochas-
tic equivalent of the well-known sampling zeros
that occur in deterministic systems of relative
degree greater than one (Åström et al., 1984). The
stochastic sampling zeros play a crucial role in ob-
taining unbiased parameter estimates in the iden-
ti¯cation of such systems from sampled data. The
reason is that most identi¯cation procedures rely
upon whitening of the noise, an operation which is
sensitive to the sampling zeros of continuous-time
systems of non zero relative degree.

A particular case of the above problem has been
studied in detail in (Söderström et al., 1997; Lars-
son and Söderström, 2002; Larsson, 2003). In par-
ticular, these papers deal with continuous-time
auto-regressive (CAR) system identi¯cation from
sampled data. Such systems have relative degree
n, where n is the order of the auto-regressive
process. It has been shown that if one ignores the
stochastic sampling zeros, e.g., by using ordinary
least squares, a clear bias will appear in the pa-
rameter estimates, even when using fast sampling
rates (Söderström et al., 1997).

In the current paper we further explore the cir-
cle of ideas outlined above. We pay particular
attention to the impact of high frequency mod-
elling errors on continuous-time system identi¯-
cation when using sampled data. We show that
high frequency modelling errors can be equally as
catastrophic as ignoring sampling zeros. Thus we
argue that one should always de¯ne a bandwidth

of ¯delity of a model and ensure that the model
errors outside that bandwidth do not have a major
impact on the identi¯cation results. This leads
us to develop a frequency domain identi¯cation
procedure which we show is insensitive to both
relative degree and unmodelled high frequency
poles.

2. BACKGROUND TO THE
IDENTIFICATION OF CAR SYSTEMS

The ideas presented in this paper are equally
applicable to all continuous-time identi¯cation
problems. However, to be speci¯c we will focus
primarily on the case of CAR system identi¯cation
from sampled data.

In (Larsson and Söderström, 2002), estimation of
the parameters of a CAR system is performed by
using a ¯ltered least squares procedure. In fact,
the pre¯lter applied to the data is closely related
to the asymptotic sampling zeros described in
(Wahlberg, 1988) (for stochastic models, and in
(Åström et al., 1984), for the deterministic case).

This is an elegant and insightful solution to the
problem. However, the asymptotic location of the
sampling zeros depend on the relative degree of
the continuous-time plant description. At this
point our claim about a bandwidth of validity for
this model becomes relevant since relative degree
may be an ill-de¯ned quantity for continuous-time
systems.

This kind of issues has been previously illustrated,
for example, by the same authors in the context of
deterministic control (Yuz et al., 2004). Here we
extend these ideas to the identi¯cation problem.

We consider a CAR system described by:

Ac(½)y(t) = v̇(t) (1)

where Ac(½) is a polynomial in the di®erential
operator ½ = d

dt
, i.e.

Ac(½) = ½n + an¡1½
n¡1 + . . . + a0 (2)

In equation (1) the term v̇(t) represents a continuous-
time white noise process.

Remark 1. We already notice the source of some
di±culties since the process v̇(t) does not exist in
any meaningful sense. Indeed, equation (1) should
actually be written as a stochastic di®erential
equation driven by a process with independent
increments, that is, Brownian motion or Wiener

process (Øksendal, 2003). Indeed, a continuous-
time white noise (CTWN) process is a mathe-
matical abstraction and does not physically exist
(Jazwinski, 1970), but it can be approximated
to any desired degree of accuracy by conven-
tional stochastic processes with broad band spec-
tra (Kloeden and Platen, 1992). Note, however,
that the di®erence between a broad band spectra
and white noise is equivalent to a particular form
of high frequency modelling error. This is the key
issue of relevance in the current paper.

If we treat equation (1) appropriately then it is
possible to derive an exact discrete-time system
that describes the samples of y(t) (Wahlberg,
1988). This model takes the following generic
form:

Ad(q
¡1)y(k∆) = Bd(q

¡1)wk (3)

where wk is a discrete-time white noise process,
and Ad and Bd are polynomials in the backward
shift operator q¡1.

It is readily shown that the polynomial Ad(q
¡1)

in equation (3) is well behaved in the sense that it
converges naturally to its continuous-time coun-
terpart. This relationship is most readily por-
trayed if the model is rewritten in the equivalent
delta form (Middleton and Goodwin, 1990):

Aδ(±) = ±n + ¹an¡1±
n¡1 + . . . + ¹a0 (4)
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