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Abstract: Nonlinear empirical models are used in various applications. During
model-building, five major steps usually have to be carried out: model structure
selection, determination of input variables, complexity adjustment of the model,
parameter estimation and model validation. These steps have to be repeated until
a satisfactory model is found, which can be very time consuming and may require
user interaction. This paper proposes an algorithm based on sparse grid function
approximation to incrementally build a nonlinear empirical model. The algorithm
exhibits good performance in terms of manual effort and computation time. The
method is illustrated by a case study on the identification of a NARX model.
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1. INTRODUCTION

Many important industrial processes exhibit non-
linear behavior. For model-based control and op-
timization a process model is required. Physically-
based process models are often not available due
to development and maintenance cost. Therefore
an empirical process model may be identified from
experimental or plant data as described by e.g.
Henson and Seborg (1997).

As a typical example, the identification of discrete-
time, nonlinear, auto-regressive models with exo-
geneous inputs (NARX models) is considered in
this paper, although the methodology presented
can easily be applied to other model structures as
well. The general formulation of a NARX model
for a process with a single input u ∈ R and a single
output y ∈ R is yk = f(xk), where f is a nonlinear
function. The input variables of the NARX model
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xk = [uk−1, . . . , uk−p, yk−1, . . . , yk−q] (1)

are delayed samples of the process input and
output, using the notation yk = y(t = tk). The
model order parameters p and q determine how
many delayed samples are included in xk.

Given a measurement data set, the NARX model
is usually built in an iterative process that consists
of five major steps:

(1) Select a model structure: A suitable model
structure for the function f has to be selected
from the many alternatives that are proposed in
literature, such as artificial neural networks or
polynomial models (Henson and Seborg, 1997).
The selection is usually strongly influenced by
personal preferences and the available software
but should be based on the intended application.
For instance, Pearson (2003) states four impor-
tant measures for model utility in process control:
approximation accuracy, physical interpretability,
ease of controller design and ease of model devel-
opment.
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(2) Determine input variables: The input vari-
ables of the NARX model, i.e. the model order,
are often assumed to be known. Alternatively,
they are determined by building multiple model
candidates with different sets of input variables
and selecting the best one. This time-consuming
search strategy can be avoided by algorithms that
suggest a model order prior to the choice of a
model structure as was presented by e.g. Feil et
al. (2004).

(3) Adjust the model complexity: The concepts
of stepwise model refinement, model pruning, i.e.
deleting dispensable parameters, and regulariza-
tion are frequently employed when model com-
plexity is adjusted, see e.g. Bishop (1995) for arti-
ficial neural networks. Model complexity is often
expressed by the number of model parameters and
is determined by the grade of nonlinearity in the
data set as well as the desired model accuracy.

(4) Estimate the model parameters: A parameter
estimation problem, which is sometimes also com-
bined with step (3), is set up and solved by an
algorithm that is usually tailored to the model
structure for numerical efficiency.

(5) Validate the identified model: After a solution
has been obtained, the model should be validated,
in order to decide if some of the preceding steps
have to be repeated to improve the model.

The model-building process can be very time-
consuming if many model candidates with differ-
ent sets of input variables and model complexities
have to be considered. The goal of this paper is to
reduce the repetitions of the model-building steps
by a systematic model-building strategy that com-
bines all steps into one algorithm. Brendel and
Marquardt (2003) noted that sparse grid approxi-
mation may find use for structure selection of non-
linear discrete-time models. This is demonstrated
in this work.

Yserentant (1986) proposed the sparse grid ap-
proach for multilevel-splitting of finite-element
spaces. It was mainly used for the solution of
PDEs (Griebel et al., 1992). Recently the sparse
grid approach has been introduced to the field of
function approximation by Garcke et al. (2001)
and Brendel and Marquardt (2003). In this paper
the stepwise model refinement algorithm of Bren-
del and Marquardt (2003) is modified to system-
atically select input variables and adjust model
complexity. Furthermore, an alternative regular-
ization term is proposed.

Sparse grid approximation is described briefly
in Section 2, which is the basis of the system-
atic model-building strategy presented in Section
3. This strategy is exemplified in a case study
on NARX model identification and the resulting
NARX model orders are compared to those found

by Feil et al. (2004). Finally, some conclusion are
given in Section 5.

2. SPARSE GRID FUNCTION
APPROXIMATION

Two basic statistical assumptions are commonly
made if an output error model ỹk = f(xk) +
εk is used in function approximation: (i) the
model structure f is reasonably correct and (ii)
the measurements of the input variables xk in
the k-th experiment contain negligible errors. All
measurement errors and the model mismatch are
described by the error term εk, which is assumed
to have a normal distribution with zero mean and
variance σ2.

The objective is to identify the function f : R
d →

R of some function space V from measurement
data of the output variable ỹ and the input
variables x. This inverse problem may be ill-posed
in the sense of Hadamard and therefore requires
regularization (Engl et al., 1996).

The function f is the solution of the regularized
least-squares estimation problem

min
f∈V

1
M

M∑
k=1

(f(xk) − ỹk)2 + λΦ(f). (2)

The first term measures the average approxima-
tion error of the function f to the measured values
ỹk and the second term represents a regularization
term to handle the ill-posedness.

The following subsections briefly describe how the
function f is defined in the sparse grid approach.
Since the sparse grid solution is composed of
multiple so-called full grid solutions, the function
approximation on a full grid is presented first.

2.1 Function approximation on a full grid

The function f is represented in the full grid
approach by a truncated basis function expansion

fl(x) :=
∑
j∈Λ

θl,jφl,j(x) (3)

where θl,j are parameters to be estimated and
φl,j(x) are basis functions that are local with finite
support in d-dimensional space. The basis func-
tions φl,j(x) are parameterized by the level multi-
index l and the position multi-index j, which have
d entries each, where d is the number of variables
in x. The level multi-index l defines the mesh
size hl = (hl1 , ..., hld) = (2−l1 , ..., 2−ld) of the full
grid in each dimension. The position multi-index
j translates the basis function in each dimension
to the coordinates xl,j = (j12−l1 , . . . , jd2−ld) with
j ∈ Λ := {j | ji ∈ {0, . . . , 2li}, i = 1 . . . d}. For
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