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Abstract: The paper addresses e¢ cient methods for parameter sensitivity analysis
and ranking in large, nonlinear, mechanistic models requiring examination of many
points in the parameter space. The paper shows how orthogonal decomposition and
permutation of the sensitivity derivative is an intuitive and structured method for
automatic ranking of the parameters within a candidate set. Provided the model
error is Gaussian, and with the problem on a triangularized form, the additional
variance associated with each parameter can easily be found. Ranking according
to additional variance is therefore another option. The methods are tested on an
industrially used simulator model. Copyright c
 IFAC 2005
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1. INTRODUCTION

Analysis of the sensitivity derivative of a model
is a necessary step when designing model based
parameter estimation algorithms. This paper ad-
dresses methods for e¢ cient manual and auto-
mated sensitivity analysis for nonlinear models on
the general form

ŷ = g(�; u)

where ŷ 2 Rny is the model output vector, � 2 Rn�
the parameter vector and u 2 Rnu is a measured
input vector which may be present in the model.
The sensitivity derivative of the model outputs to
the parameter vector is de�ned as

S =W� 1
2
dŷ(�; u)

d�
2 Rny�n�

1 Supported by NTNU, Elkem and SINTEF

where W� 1
2 is a diagonal weighting matrix. Each

column of the sensitivity derivative will express
one parameter�s sensitivity in all outputs, and can
therefore be viewed as the sensitivity direction for
the corresponding parameter.

The focus in this paper is on situations when the
sensitivity derivative is on numerical form, as op-
posed to situations when an analytical expression
for S can be found. Since the model is nonlinear,
global identi�ability can generally not be proven.
To increase the probability that the model is
identi�able over the whole parameter space, the
sensitivity derivative must be checked for as many
parameter vector values as possible. If the model
is also nonlinear in the input vector u, then u will
a¤ect the sensitivity derivative, and S needs to
be calculated for a wide range of values of u as
well. This requires e¢ cient automated sensitivity
analysis methods.

Copyright (c) 2005 IFAC. All rights reserved
16th Triennial World Congress, Prague, Czech Republic

 578



In sensitivity analysis, the following properties of
the sensitivity derivative are of interest:

� Many large values in a column are an indica-
tion of high sensitivity to the corresponding
parameter.

� Large di¤erences in the norms of the columns
indicate large di¤erences in sensitivity or
poor scaling.

� Degree of linear dependence between columns

Many linear transformations of S or S0S will
reveal these properties. A search into relevant
literature databases covering the control engineer-
ing domain verify that eigenvector transformation
of S0S is the most commonly used method. Eigen-
vector transformation can be used for manual pa-
rameter ranking through ordering the eigenvalues
of S0S according to size, and inspecting the cor-
responding eigenvectors to determine which pa-
rameters are the most signi�cant contributors to
this particular direction. Generally this may not
be a trivial task since the eigenvector decomposi-
tion produces linear combinations of the original
directions of the problem (columns of S):

A large condition number, � =
q

max eig(S0S)
min eig(S0S) ; in-

dicates either weak individual sensitivity or linear
dependence within S. Eigenvalue transformation
can therefore be used for automatic ranking of
the parameters, by removing (combinations of)
columns from S and calculate the condition num-
ber of the corresponding sub-matrices of S0S. As
an automated method this will give a trial and
error method.

An alternative method for automatic ranking pro-
posed in this paper utilizes the original direc-
tions of S, and reduces the column space of S
into an orthogonal set of vectors in a successive
manner. This provides an intuitive and structured
way of ranking the parameters and is carried out
as follows. From the non-selected set of columns
in S, select the column with the highest norm,
form a unit vector, and remove this direction (by
projection and subtraction) from the non selected
set of columns. The procedure is repeated until
all columns have been selected. The order of se-
lection is stored in a permutation matrix. This
economical QR decomposition with permutation
of the sensitivity derivative will give a triangular
form of S0S: The same form can be found by LDL0

decomposition and permutation of S0S: Successive
orthogonalization with permutation is described
by example in section 3 of this paper.

If the deviation between the actual and simu-
lated output vectors, i.e. the model error " =
y � ŷ(�); can be assumed to be a stochastic
process with Gaussian properties, then tr(S0S)�1

gives an estimate of the lower limit of the para-
meter covariance (Söderström and Stoica 1989).

(Berntsen 1977) showed that if S0S is already on
a triangular form, a particularly easy form of the
individual variance contribution of each parame-
ter can be found, see section 4. This can be applied
to an already ordered set of parameters or used as
another method to rank the parameters.

Manual inspection of S0S can in simple cases
give su¢ cient information to rank the parame-
ters. Manual inspection is however also useful in
more complex cases to gain initial insight into
important features of the problem, and provide
a basis to understand or second-guess the ranking
done by automated procedures. A transformation
of S0S which is particularly useful for manual
inspection is presented in section 2.

All three methods have been applied to an exam-
ple 21� 6 sensitivity derivative in section 5. Man-
ual inspection has been used initially to reveal the
most important properties of the example matrix.
Next, the parameters have been ranked through
successive orthogonalization and by smallest ad-
ditional variance. The methods have also been
applied to a larger, industrial example, and the
results of this analysis have been summarized in
section 6. Conclusions are given in section 7.

2. MANUAL INSPECTION OF S0S

In the following a transformation of S0S giving
a particularly useful form for manual inspection,
is demonstrated. The following is valid for any
sensitivity derivative S with dimension ny � n�;
ny � n�; but for pedagogical reasons, an ny �
3 matrix, S =

�
a b c

�
; is used. a; b; c are the

column vectors:

Cross multiplication of S gives

S0S =

24 kak2 ha; bi ha; cihb; ai kbk2 hb; ci
hc; ai hc; bi kck2

35
where h�; �i denotes the inner product and k�k the
Euclidian norm of a vector. The squared norms
on the diagonal give a measure of the total sen-
sitivity of each individual parameter. Large inner
products in the o¤diagonal elements indicate that
the two vectors have large elements in the same
places (linear dependence), and/or a large norm of
the vectors involved. To separate the information
about the impact of each individual parameter
from the information about linear dependence,
the norms (S(i; i) > 0) are extracted and S0S to
written on the form shown in equation (1).

In (1) the �rst and last matrices contain informa-
tion about the "strength" of each parameter, as
sensitivity vector length. The o¤ diagonal terms
of the middle matrix can be recognized from the
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