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a b s t r a c t

In this article we study the electro-thermal convection in a dielectric liquid layer placed between two
electrodes and subjected to the simultaneous action of an electric field and a thermal gradient. The full
set of equations describing the electro-thermo-convective phenomena is directly solved using a finite
volume method. We first heat the liquid from below at time t ¼ 0, wait for the thermal steady state and
then inject the electric charges by applying the electric potential. The development of the electro-
convective motion is analysed in detail in two cases: 1) strong injection from the lower electrode, 2)
strong injection from the upper one. We also study the heat transfer enhancement due to electro-
convection. The evolution in time of the Nusselt number Nu for different combinations of the two
usual non-dimensional parameters associated to the electro-thermo-convection phenomena (Rayleigh
number Ra and the electrical parameter T) is also given and analysed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The combined effects of an electric field and a thermal gradient
simultaneously applied to a horizontal dielectric liquid layer leads
to very complex physical interactions in the flow. It has been shown
experimentally [1,2] that the heat transfer across an insulating
liquid can be increased by one order of magnitude. This increase is
due to the development of secondary motions that result from two
principal body forces: the Coulomb force acting on any free electric
charge present in the liquid and the dielectric force. Here we
consider a dielectric liquid of very low conductivity so that we can
consider that the free space charge only come from ion injection
mechanisms at the electrodes (by electrochemical reactions). The
amount of electric charge in the liquid due to injectionmechanisms
at the interfaces is a lot greater (more than one order of magnitude)
than the one induced in the volume by electrical conduction
mechanisms.

In Electro-Hydro-Dynamic (EHD) the convection induced by
charge injection in a dielectric liquid is a problem as fundamental as
the one of Rayleigh-Benard in non isothermal fluid mechanics. The
action of the electric field on the space charge density arising from a

unipolar injection (electric charges coming from only one elec-
trode, which is the case in this article) has the same destabilizing
role than the thermal field when the fluid is heated from below in
Rayleigh-Benard problems [3]. However both convections are not
identical from a physical point of view. The mechanisms at the
origin of the motion of the fluid are quite different in both cases: in
Rayleigh-Benard convection the heat transfer is governed by ther-
mal diffusionwhereas the ion migration is the relevant mechanism
in the electric charge transfer in electro-convection. When the
space charge only results from ion injection, the coupling between
the conservation equations of momentum, electric charge and en-
ergy is ensured via the Coulomb and the buoyancy forces. This
coupling results from the direct interaction between velocity,
temperature and charge perturbations and from the non direct
interaction between the velocity and the charge. Most of the au-
thors who have been working theoretically so far on electro or
electro-thermo-convective problems in horizontal planar layers of
dielectric liquids chose a stability analysis approach [4e7]. Only a
few numerical simulations have been attempted on pure EHD
convection problems [8e10] over the last decade.

In [11], for the first time, we solve the Electro-Hydro-Dynamic
problem coupled with the energy equation in a 2D cavity and
developed a direct numerical simulation based on a finite-volume
method. Here we focus on the convective mechanisms respon-
sible for fluid motionwhen the charges are injected from the lower
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or upper electrode into an insulating liquid. The spatio-temporal
evolution of the electro-thermo-convective flow in the dielectric
liquid layer is analysed in detail. The influence of the induced
electro-convection on the heat transfer is studied by the mean of
the time evolution of the Nusselt number.

2. Statement of the problem

2.1. Basic governing equations

We consider a dielectric liquid layer of thickness H enclosed
between two electrodes of length Lx. The layer is heated from below
and subjected to a thermal gradient Dq ¼ q0 � q1. The emitter
electrode which injects a charge density q0 can be either the lower
electrode (Electrode 0) or the upper one (Electrode 1). Between the
two electrodes a potential difference DV ¼ V0 � V1 is applied. Fig. 1
displays the case where the emitter electrode is Electrode 0.

The general set of equations expressing the conservation of: 1)
the mass and momentum (NaviereStokes equations) for an
incompressible fluid with electrical and buoyancy effects; 2) the
energy under the Boussinesq assumption; 3) the charge density
and the divergence properties of the electric field (Maxwelle
Faraday and MaxwelleGauss equations) takes the following
dimensionless form:
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where u! is the velocity, ~p the modified pressurewhich includes the
pressure and the scalar from which the electrostriction force de-
rives, q the volumic electric charge density in the liquid, E

!
the

electric field, 3 the permittivity of the fluid, q the absolute tem-
perature, V the electric potential and q E

!
the Coulomb force. We

introduce the following non-dimensional scales: H for the length,
the applied voltage DV ¼ V0 � V1 for the electric potential, DV/H for
the electric field, q0 for the charge density, 30KDV

2/H3 for the cur-
rent density, y/H for the velocity (y is the kinematic viscosity of the
liquid), r0y2/H2 for the pressure, q/(q0 � q1 for the temperature and

H2/y for the time. The following dimensionless quantities defined
as: Ra ¼ gbDqH3/n k, T ¼ 3DV/rnK, C ¼ qoH

2/ 3DV, M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=rK2

p
,

Pr ¼ n/k and R ¼ T/M2, are respectively the Rayleigh number with g
the gravity and k the thermal diffusivity of the liquid, T the electric
instability parameter, C a measure of the injection level with q0 the
injected charge at Electrode 0, M the mobility parameter, Pr the
Prandtl number and R the electric Reynolds number. In this study,
we consider the case of a strong injection so that the dielectric force
�ð1=2Þ�� E

!��2V 3is much lower than the Coulomb force and can be
neglected [10,12].

2.2. Initial and boundary conditions

We start from rest with all the quantities set to zero. The whole
simulation duration is t ¼ 50, in dimensionless time. In order to
well characterize the enhancement of heat transfer we first start to
heat the liquid from below from time t ¼ 0. When the thermal
steady state is obtained, we apply the electric potential difference
between the two electrodes so that the electric charges are injected
in the bulk.

The horizontal walls are assumed impermeable as well as
thermally and electrically perfectly conducting. We consider no-
slip boundary conditions for the velocity on lateral and horizontal
walls. The boundary conditions for the potential and the temper-
ature in the case of heating and injecting from the lower electrode
are depicted in Fig. 2.

3. Numerical method

The above set of coupled partial differential Eqs. (1)e(6) are
discretized using a finite-volume approach. Full details on the

Fig. 1. Sketch of the physical domain.

Fig. 2. Computational domain and boundary conditions.

Fig. 3. Time evolution of Nusselt number, in three cases for C ¼ 10, T ¼ 200,
Ra ¼ 10,000, Pr ¼ 40 and M ¼ 10.

K. Dantchi et al. / Journal of Electrostatics 71 (2013) 970e975 971



Download English Version:

https://daneshyari.com/en/article/10406698

Download Persian Version:

https://daneshyari.com/article/10406698

Daneshyari.com

https://daneshyari.com/en/article/10406698
https://daneshyari.com/article/10406698
https://daneshyari.com

