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a b s t r a c t

A Bessel function expression is developed for the voltages produced when annular tanks (vertical axis
cylindrical tanks with central conductors) are filled with liquids of uniform charge density. The
expression is used to calculate the maximum surface voltage and this is compared with the maximum
voltage predicted for tanks without a central conductor. Previous estimates of the percentage voltage
reduction produced by a central conductor during tank filling have indicated a reduction of about 42% for
practical tank dimensions. The new results, which are obtained with a more realistic model geometry,
suggest a reduction of only about 29%.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

When a conductive-walled tank with an earthed central
conductor (e.g. a truck compartment with a centrally-located dip
tube or top-loading fill pipe) is filled with an electrostatically
charged liquid, the presence of the central conductor reduces the
maximum potential on the liquid surface. Voltage reductions have
been observed experimentally in medium-sized vessels (defined as
1.3 m � effective diameter < 10 m [1]) but a range of voltage
reduction factors (ratio of maximum potentials with and without
central conductor) has been reported (see Section 5).

Historically, maximum tank filling rates for controlling electro-
static ignition hazards were determined for top loading in the
presence of a central fill pipe and later an allowance for increased
voltage was made when recommending filling rates in the absence
of a central conductor [2]. Because of the experimental un-
certainties in the observed degree of voltage reduction produced by
a central conductor it is of interest to model the potentials attained
with a central conductor to better understand the relationship
expected between potentials with and without a central conductor
and the parameters that could influence it.

This paper describes a model for the potentials attained in a
partly-filled vertical axis cylindrical tank of finite height with
conductive side wall, roof and base that has a central conductor
consisting of a coaxial inner cylinder. The geometry, which may be
termed an “annular tank” configuration, is shown in Fig. 1.

2. Previous calculations

Liquid surface potentials in partly-filled rectangular [3] and
vertical-axis cylindrical [4] tanks without central conductors have
been calculated previously with some success using models based
on uniform liquid charge density. The potentials predicted by these
models during tank filling are of approximately the right magni-
tude [5] although the calculated maximum potential typically oc-
curs earlier in the fill than the measured maximum.

Equivalent calculations have not been reported for tanks with
central conductors. Simple theoretical estimates have beenmade of
the expected scale of reduction [6] but they are based on rather
crude models which calculate voltages in tanks that are completely
full of liquid and either infinitely tall (simple analytical solutions
covering all central conductor diameters) or of finite height (nu-
merical solutions for limited number of geometries with potentials
being considered at half height). The present work describes cal-
culations equivalent to the Asano cylindrical tank model [4] but for
annular tanks. The voltage reduction produced by the central
conductor is calculated by comparing the annular tank results with
results obtained from the original Asanomodel for cylindrical tanks
with the same overall dimensions.

3. Calculation details

3.1. Outline of model

We have adapted Asano’s model [4] for potentials in vertical-
axis cylindrical tanks to cover annular tanks (Fig. 1). In the body
of the paper we concentrate on the calculation of potentials at the
liquid surface because these are the highest potentials that appear
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in the vapour space and hence are the most important for assessing
electrostatic hazards. Expressions for the potentials at other loca-
tions in both the liquid and vapour spaces are, however, given in
Appendix A.

Like Asano, we used separation of variables to solve Poisson’s
equation in the liquid space and Laplace’s equation in the vapour
space and hence expressed potentials in terms of the sum of
products of radial Bessel functions and vertical hyperbolic func-
tions. Our solutions have a similar form to Asano’s (see Appendix A)
but the radial functions involve Bessel functions of the second kind
as well as of the first kind and the eigenvalues are no longer the
zeros of the Bessel function, J0. The vertical functions differ only in
the modified eigenvalues.

The basic calculations give annular-tank liquid surface voltages
in terms of tank dimensions, charge density and liquid depth. These
have been supplemented by tank filling charging/relaxation cal-
culations of the type done by Britton and Smith [7] and Britton and
Walmsley [8] to estimate the charge density that would appear
during tank filling and hence provide tank-filling voltage calcula-
tions for annular tanks. This extension of the basic calculation is
necessary for the theoretical assessment of the influence of a
“central conductor” on liquid surface voltage during tank filling.

3.2. Equations solved

The equations to be solved were set out by Asano [4], namely;
Laplace’s equation in the vapour space and Poisson’s equation in
the liquid space. The only difference between his analysis and the
present one lies in the inner radial boundary condition. In a cylin-
drical tank it is vF=vr ¼ 0 at r ¼ 0, whilst in an annular tank it is
F ¼ 0 at r ¼ a0, where F is the potential, r is the radial coordinate
and a0 is the inner conductor radius. Throughout this paper we
have solved the dimensionless equations formed by scaling Pois-
son’s and Laplace’s equations with the characteristic length scale
L* ¼ a (the tank radius) and the characteristic potential F* ¼ ra2/
3L 30. The dimensionless equations thus formed are:

V2Fv ¼ 0 (1)

for the potential, Fv, in the vapour space and

V2FL ¼ 1 (2)

for the potential, FL, in the liquid space. The boundary conditions
are that the potential is zero at the tank walls, including the surface
of the inner conductor (i.e. for z¼ 0, z¼ H, r¼ 1 and r¼ a0) and that
Fv ¼ FL and dFv=dz ¼ 3LdFL=dz at the liquid surface (we assume
no surface charge). The nomenclature is given in Appendix B.

3.3. Cases covered and the associated dimensionless voltages used
to present the results

The real dimensional potentials, VL and Vv, in the liquid and
vapour spaces are given by:

V ¼ F
�
ra2= 3L 30

�
(3)

where F represents one of the dimensionless potentials FL or Fv
and V represents VL or Vv. Solutions to Equations (1) and (2) are
discussed for two principle cases:

a) fixed charge density, r,
b) fixed total tank charge, Q.

Case a) is used for checking and comparing with Asano’s results
whilst Case b) is applicable to tank filling because, by the time the
maximum potential is reached, the total charge in the tank usually
has the constant value Q¼ Iseff (Britton andWalmsley [8]),1 where I
is the inlet streaming current and seff is the effective relaxation
time. The effective relaxation time is related to the relaxation time,
s, of the rest liquid by seff ¼ sqwhere q is an empirical factor used to
correct for departures from ideal relaxation behaviour. The relax-
ation time of the rest liquid is s ¼ 3L 30/k where k is the liquid con-
ductivity. Case b) can be divided into two subcases:

1) The central conductor behaves as a solid obstruction so liquid is
confined to the space between the inner and outer conductors.
In this case the volume occupied by the liquid and the charge is
v ¼ pa2(12 � a0

2)zs.
2) The central conductor behaves like a perforated wall or mesh

that sets the potential to zero at r ¼ a0 but allows the liquid and
charge to occupy the entire interior of the tank including the
space enclosed by the central conductor. The volume occupied
by the liquid and the charge is then v ¼ pa2zs.

Subcase b1) represents top filling with a centrally located fill
tube (see below) whilst Subcase b2) represents bottom filling with
a centrally located perforated sampling tube. When the central
conductor is small there is little difference between the two
subcases

In Case a) it is most convenient to plot the results using the
modified dimensionless potential Fa ¼ V 30/ra2 ¼ F/ 3L because
this has the same dependence as the real voltage, V, on tank
aspect ratio, relative liquid depth, relative inner conductor
radius and liquid dielectric constant. In Case b) (tank filling) we
employ the substitutions Q ¼ Iseff, seff ¼ sq, s ¼ 3L 30/k, r ¼ Q/v
along with v ¼ pa2(12 � a0

2)zs for Subcase b1) and v ¼ pa2zs for
Subcase b2). With these substitutions it is found that the
alternative modified dimensionless potential Fb ¼ Vpka/I scales
in the same way as the real voltage, V, and this is consequently
the most convenient dimensionless voltage to use for presenting
results. Subcase b1) gives Fb1 ¼ F/[zs(1 � a0

2)] whilst Subcase
b2) gives Fb2 ¼ F/zs.

3.4. Solutions

When solving Equation (1) by separation of variables, the so-
lutions take the form:

Fig. 1. Annular tank geometry.

1 It usually takes much longer than the effective charge relaxation time for the
surface potential to reach a maximum. In this case, when the potential is at a
maximum, the total charge takes the quoted fixed value if charge relaxation obeys
Ohm’s law.
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