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a b s t r a c t

Correspondences between the Thomson problem and atomic electron shell-filling patterns are observed
as systematic non-uniformities in the distribution of potential energy necessary to change configurations
of N � 100 electrons into discrete geometries of neighboring N � 1 systems. These non-uniformities yield
electron energy pairs, intra-subshell pattern similarities with empirical ionization energy, and a salient
pattern that coincides with size-normalized empirical ionization energies. Spatial symmetry limitations
on discrete charges constrained to a spherical volume are conjectured as underlying physical mecha-
nisms responsible for shell-filling patterns in atomic electronic structure and the Periodic Law.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantum mechanical treatments of electrons in spherical
quantum dots, or “artificial atoms” [1], routinely exhibit corre-
spondences to atomic-like shell-filling patterns by the appearance
of abrupt jumps or dips in calculated energy or capacitance distri-
butions as electrons are added to or removed from the system [2e
10]. Additionally, shell-filling is observed in ion trap models in
which ions are subjected to a spherical harmonic potential [11e14].
An understanding of physical mechanisms responsible for shell-
filling is useful to the engineering of tailorable electronic proper-
ties of quantum dots and ion traps as well as a better understanding
of atomic electronic phenomena.

Electron shell-filling behavior has been observed in two-
dimensional classical electrostatic models using a parabolic po-
tential [15]. However, electrostatic treatments of three-
dimensional artificial atoms have fallen short of yielding any
observable shell-filling patterns [2]. Recently, similarities between
classical electrostatic properties of spherical quantum dots and the
distribution of empirical ionization energies of neutral atoms were
reported for N � 32 electrons [16,17] when evaluated using the
discrete charge dielectric model [18]. The present paper builds on

this previous work by identifying numerous correspondences be-
tween the electrostatic Thomson problem of distributing equal
point charges on a unit sphere and atomic electronic structure.

Despite the diminished stature of J.J. Thomson’s classical “plum-
pudding” model [19] among more accurate atomic models, the
Thomson problem has attracted considerable attention since the
mid-twentieth century [20]. The Thomson problem has found use
in practical applications including models of spherical viruses [21],
fullerenes [22,23], drug encapsulant design [24], and crystalline
order on curved surfaces [25]. Numerical solutions for many-N
electron systems have emerged in the last few decades using a
variety of computational algorithms [26e36]. The Thomson prob-
lem is now a benchmark for global optimization algorithms [34,35],
yet its general solution remains an important unsolved mathe-
matics problem [37].

A symmetry-dependent electrostatic potential energy distribu-
tion is obtained using numerical solutions of the Thomson problem
for N � 100 electrons residing strictly on a unit sphere. This dis-
tribution exhibits many disparities (“jumps” and “dips”) that
appear to be randomly distributed. However, upon closer inspec-
tion these disparities appear in a “systematic” [38] pattern shown
here to be consistent with the pattern of atomic electron shell-
filling as found in the form of the modern Periodic Table. A deri-
vation of the symmetry-dependent potential energy distribution is
given. A detailed description of its many correspondences with
atomic electronic structure is provided in support of the conjecture* Tel.: þ1 319 512 9909.
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that spatial symmetry limitations on discrete charges constrained
to a spherical volume of space, as within a spherical dielectric or the
central field of a nucleus, are underlying physical mechanisms
responsible for electron shell-filling in quantum dots, ion traps, and
atomic electronic structure. Additionally, a pattern of the largest
energy disparities is shown to coincide with size-normalized
empirical ionization energy data with discussion concerning rele-
vant topological features of N-charge solutions and correspondence
to shell-filling in atoms and ion traps. The systematic pattern of
classical electrostatic symmetry-dependent energies consistent
with atomic electron shell-filling is anticipated given the variety of
neighboring geometric electron orbital shapes obtained from
quantum mechanics (s, p, d, and f orbitals).

For ease of verification, the reported results are based on data
collected in an interactive database of numerical solutions of the
Thomson problem hosted by Syracuse University [39] which may
be compared with numerous other published sources [26e36].

2. Discrete symmetry changes

In the absence of a positively-charged spherical volume, elec-
trons in the “plum pudding” model repel each other in such a
manner that they naturally form solutions of the Thomson problem
[40]. These solutions are obtained byminimizing the total Coulomb
repulsion energy

UðNÞ ¼
XN

i<j

1��ri � rj
�� (1)

of eachN-electron systemwith ri and rj constrained to the surface of
a unit sphere. An example of the 5-electron solution is shown in
Fig. 1a. The minimum energy is obtained with an electron at each
“pole” of the unit sphere, and the remaining three electrons are
located at vertices of an equilateral triangle about the “equator”.
Herein, the geometric configuration of each N-electron system is
denoted in square brackets, [N].

To change the electrostatic electron configuration of a given [N]
solution of the Thomson problem to the configuration of its
neighboring [N � 1] solution such that the total number of elec-
trons remains unchanged, a single electron is moved from the unit
sphere to its origin. In general, the resulting electron distribution is
one electron, q0, at the origin, and the remaining N � 1 electrons
distributed on the unit sphere having the [N � 1] solution of the
Thomson problem. This centered configuration may be denoted by
[N� 1þ], inwhich “þ” indicates the presence of q0. The total energy

of any transformed systemmay be expressed as a function of U([2]),
the energy of the two-electron solution of the Thomson problem,

U
�h

N � 1þ
i�

¼ Uð½N � 1�Þ þ 2ðN � 1ÞUð½2�Þ (2)

where the last term accounts for the interaction of q0 with all N � 1
electrons residing on the “Thomson sphere”.

The [4þ] solution shown schematically in Fig. 1b, consists of four
electrons at vertices of a regular tetrahedron about q0 at the origin.
Symmetrically, the [4þ] point group configuration is identical to the
[4] point group configuration [12] of the Thomson problem as q0
interacts identically with all N � 1 charges on the Thomson sphere.
Using Eq. (2), the energy difference as shown in Fig. 2

Fig. 1. Discrete spatial symmetry changes. The 5-electron solution of the Thomson problem on (a) a unit sphere transforms into (b) the centered [4þ] configuration having one
charge, q0, at the origin surrounded by the Thomson solution for 4-electrons on the unit sphere.

Fig. 2. Discrete spatial symmetry changes in the Thomson problem. Changing the
symmetry of a given [N] configuration to the symmetry of its neighboring [N � 1]
configuration while maintaining all N electrons involves an intermediate [N � 1þ]
centered configuration. This transition represents the symmetry-dependent compo-
nent, DUþ(N), of the energy needed to remove a single electron. The remaining tran-
sition from [N � 1þ] to [N � 1] is the isosymmetric component whose energy, DU0(N),
is linearly dependent on N.
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