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a b s t r a c t

We obtain a simple and exact expression for the average field Eave in the gap between cylinders of
arbitrary radii and separation. For given external field E0 parallel to the plane of the cylinder axes, Eave/E0
increases in proportion to s-1=2 as the separation s of the cylinders tends to zero. In addition, exact
expressions are derived for the longitudinal and transverse polarizabilities of a pair of cylinders, and for
their contact values.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The electrostatics of two conducting spheres in an external field
is now well-understood, both in the system polarizability [1e6],
and in the enhancement of the field in the space between the
spheres [5e7].

For a pair of parallel conducting cylinders, there is a substantial
literature on charged cylinders [8e14]. For uncharged cylinders in
an external field, the author has recently calculated the longitudinal
and transverse polarizabilities of two cylinders of equal radius [15].
Here we consider the general problem of a pair of uncharged cyl-
inders of arbitrary radii and at any separation, in an external field.
We shall derive exact expressions for the longitudinal and trans-
verse polarizabilities, and also for the enhancement of the external
electric field in the region between the cylinders. We find that the
enhancement factor goes to infinity (in the longitudinal case) as the
cylinders approach contact.

As in Ref. [15], we shall use bicylindrical coordinates u, v which
are related to Cartesian x, y coordinates by the conformal
transformation

xþ iy
[

¼ icot
vþ iu
2

: (1)

This maps the region exterior to the cylinders onto the
rectangle �ub < u < ua, �p < v < p in the uv plane. Equating the
real and imaginary parts of (1) gives

x
[
¼ sinh u

cosh u� cos v
;

y
[
¼ sin v

cosh u� cos v
: (2a)

Elimination of v from the equation (2) gives circles in the xy plane
parameterized by u:

ðx� [coth uÞ2 þ y2 ¼ [2

sinh2 u
: (2b)

Thus u ¼ ua corresponds to a circular cylinder parallel to the z-axis,
centered on ([coth ua, 0), with radius a ¼ [/sinh ua. Likewise the
circular cylinder u ¼ �ub (ub > 0) is centered on (�[coth ub, 0), and
has radius b ¼ [/sinh ub. The scale length [ is determined once we
specify the distance between the cylinder centers, which we will
call c. It is given by

[ ¼ ½ðcþ aþ bÞðc� a� bÞðcþ a� bÞðc� aþ bÞ�12
2c

: (3)

The relation (3) follows from

c ¼ [ðcoth ua þ coth ubÞ; sinh ua ¼ [=a; sinh ub ¼ [=b:

(4)

Also from equation (4), ua and ub may be explicitly expressed in
terms of the cylinder radii a, b and center to center distance c:
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cosh ua ¼ c2 þ a2 � b2

2ac
; cosh ub ¼ c2 � a2 þ b2

2bc
: (5)

Fig. 1 shows a section of the two cylinders. We shall be
considering the effects of an external field along the x or y axes,
respectively longitudinal and transverse to the plane containing the
cylinder axes. The transverse case is simpler, and is treated first, in
Section 2. The longitudinal case is considered in Sections 3 and 4.
Section 5 gives the surface charge density on the cylinders, and
Section 6 together with the Appendix discuss the polarizabilities of
a cylinder pair in close approach and at contact.

2. Cylinder pair in transverse external field

We seek a solution of Laplace’s equation V(x,y) which tends
to �E0y far from the cylinders. The external field (0, E0, 0) is up-
wards in Fig. 1, and we specify the potential to be zero at y¼ 0. Both
cylinders are thus at zero potential, and the potential is odd in y.
Since the relation between the (x,y) and (u,v) coordinates is
conformal, any differentiable function of vþ iuwill satisfy Laplace’s
equation. Given the symmetries noted above, a possible solution is

Vðu; vÞ ¼ �E0yþ E0[
XN
n¼1

sin nv
n
Anenu þ Bne�nu

o
: (6)

From equation (15) of [15], y ¼ 2[
XN
n¼1

e�njujsin nv; so

Vðu; vÞ ¼ E0[
XN
n¼1

sin nv
n
Anenu þ Bne�nu � 2e�njuj

o
: (7)

The potential is to be zero on u ¼ ua and on u ¼ �ub. Since sin nv
form an orthogonal set for integer n, we have

Ane2nua þ Bn ¼ 2; An þ Bne2nub ¼ 2; (8)

and therefore

An ¼ 2
e2nub � 1
e2nU � 1

; Bn ¼ 2
e2nua � 1
e2nU � 1

; U ¼ ua þ ub: (9)

The solution with the correct boundary conditions is thus

V
E0[

¼ �sin v

cosh u� cos v
þ 2

�
XN
n¼1

sin nv

(�
e2nub � 1

�
enu þ �

e2nua � 1
�
e�nu

e2nU � 1

)
: (10)

The expression (10) is equivalent to that of Example 83 on p297 of
Jeans [16], quoted from a Cambridge Tripos question. Fig. 2 shows the
potential distribution around two cylinders in a transverse external
field, calculated fromequation (10), andalsotheelectricfield intensity
E2. The intensity is Ex2þ Ey

2¼ Eu
2þ Ev

2,where Eu[¼�(coshu� cos v)vuV
and Ev[ ¼ �(cosh u � cos v)vvV, from equations (32) and (35).

We now wish to extract the transverse polarizability. (The field
enhancement factor is not interesting in the transverse case: the
cylinders are at the same potential, and the average field along the
shortest line joining them is zero.) To find the transverse polariz-
ability aT of the cylinder pair, we need to compare the asymptotic
form of (10) minus the external field term with that of a dipole
p ¼ (0, p, 0), namely [15] Vp ¼ 2py/r2, where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. From

Ref. [15], or directly from equation (2), we see that large r corre-
sponds to both u and v small, with r/2[½u2 þ v2��1

2. It then follows
that Vp/pv=[; this is to be compared with the asymptotic form of
the sum in equation (6) as u; v/0, namely E0[v

PN
n¼1 nðAn þ BnÞ.

The transverse polarizability aT ¼ p/E0 is therefore given by

aT ¼ 2[2
XN
n¼1

nðAn þ BnÞ ¼ 2[2
XN
n¼1

n
e2nua þ e2nub � 2

e2nU � 1
: (11)

Fig. 1. Two parallel circular cylinders, of radii a and b, specified by u ¼ ua and u ¼ �ub
in bicylindrical coordinates. The center-to-center distance is c, the smallest separation
is s ¼ c � a � b. The angles A and B specify azimuthal positions on the two cylinders, as
needed for the surface charge densities (Section 5).

Fig. 2. Cylinders of radii a and b ¼ 2a, separated by distance s ¼ a (separation of
centers c ¼ 4a), in a transverse external field, which is vertical in the figures. For this
configuration, the centers of the cylinders are at (13a/8, 0) and (�19a/8, 0). The upper
figure shows equipotentials at equal intervals, the lower shows contours of equal in-
tensity (E/E0)2, increasing in factors of 2 from 1/8 (red) to 4 (yellow). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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