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a b s t r a c t

Models relating the coupling coefficient of coupled circuits to their physical layout and separation are
essentially empirical in nature and have, until very recently, been available exclusively for inductive
systems. In this work, we propose elementary models for representing the evolution, with distance, of
the coupling coefficient between two dipoles arranged in different configurations. Both the electric and
magnetic coupling cases are examined. We demonstrate that in the case of electrically coupled dipoles,
with due consideration for specific practical constraints, the coupling coefficient is optimal when the
dipoles are asymmetrical and arranged in an axial configuration. We show that the rate of fall of coupling
coefficient increases with the relative separation between the dipoles. Finally, a simple formula for
estimating the range of all non-radiating resonant power transport devices is proposed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Non-radiating Wireless Power Transfer (WPT) or Near-Field
Communication (NFC) devices exchange power or data at a dis-
tance through resonant circuits coupled in their near-field regions.
They are characterized by their small size compared to wavelength
and consequent negligible radiative losses. Moreover, the field
distribution between the devices is accurately described by the
same equations that apply for static regimes. The coupling can be
implemented through a magnetic field, as in a transformer, or
through an electric field, as in a capacitor. In such systems, power is
best transferred in a longitudinal manner [1], a result not consistent
with the wave paradigm [2].

The history of electrically coupled devices has not been
very eventful. Since the invention of the century-old electrostatic
influence machines and the pioneering work of Nikola Tesla [3],
the field stagnated even though sporadic attempts have been made
to implement Capacitive Power Transfer (CPT) using two ideal
capacitors, as described by Boie [4]. In the past seven years, thanks
to sustained market interest for WPT, the field has witnessed a

revival following the works of a small number of researchers who
have qualified it by various non-consensual terms. In this work, we
adopt the terms electrical influence or simply influence. The notion
of total influence is applicable in the degenerate case of the ideal
capacitor, whereas partial influence provides a generalized frame-
work for studying capacitive coupling [5]. Similarly to magnetic
induction systems, the technology of devices coupled by electrical
influence involves interactions between coupled dipoles [6] (Fig. 1).

Analysis of these devices leads to matrix representations and to
the notions of self-capacitance of an electrode and mutual capaci-
tance between pairs of electrodes [7]. In practice, optimal imple-
mentation of this technology entails the use of highly asymmetrical
electrical dipoles arranged along a common longitudinal axis [8].
One of the objectives of this article will be to justify these elements
quantitatively.

Estimation of the power transfer capacity of a given arrange-
ment, involves, in the simplest case, a two port system described by
a 2�2 coupling matrix [9]. The determination of the amount of
transferred energy per cycle relies essentially on the knowledge of a
coupling coefficient which can be determined from a static analysis.
Power transfer scales as frequency, while efficiency is related to the
quality factor of the devices [10]. Knowing the evolution of the
coupling coefficient with distance is then a key point for evaluating
the maximum range achievable by near-field systems [11].
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The coupling coefficient is usually considered as a mere nu-
merical variable that can either be measured experimentally or
evaluated using lengthy numerical methods [12]. In this work, we
establish some elementary formulas that quantify, in simple elec-
tric and magnetic coupling cases, the coupling coefficient in terms
of relative dimensions and, in particular, the relative distance be-
tween the dipoles.

In dynamic electrical coupling situations, the material currents
are replaced in the surrounding medium by Maxwell’s displace-
ment currents that cannot be easily followed or measured. We
adopt here, following Ref. [8], a natural approach where only con-
servative material current paths are figured (open-ended repre-
sentations). The problems are made amenable to a simplified
analytical treatment by first considering dipoles consisting of
closely spaced planar electrodes before focusing on dipoles made
up of relatively distant electrodes of spherical shape. The first one
concerns quasi-contact situations whereas the latter case involves
intermediate and large separations. With reference to these con-
figurations, we investigate the effects of electrode asymmetry and
mutual orientation (longitudinal or transverse) of the dipoles.

For inductively coupled systems, we investigate the case of two
distant coaxial flat coils by making use of Maxwell’s method to
evaluate the mutual and self inductances of the coupling matrix.
The general behavior of the coupling coefficient of the magnetically
coupled system is very similar to that of the electrically coupled
systems.

Through the use of classical results on efficiency and power
transfer, we provide a simple universal formula giving the
maximum achievable range for both types of non-radiating near-
field power transfer systems.

2. Electrical coupling models

2.1. Electrostatic theory

Classical electrostatic theory, applied to multiple interacting
electrodes in quasistatic equilibrium provides the framework for
expressing their potentials in terms of their charges [7]. In this
frame, an elementary charge dQ generates, at distance r, within a
medium of permittivity ε0, a potential dV given by

dV ¼ dQ
4pε0r

: (1)

The theorem of superposition of potentials can be used to
calculate, at any point, the net potential resulting from a charge
distribution over a volume n according to

V ¼
Z
n

dQ
4pε0r

: (2)

If the charges are distributed over the surface of several con-
ductors, the above integral can be split as a sum of contributions of
all the conductor surfaces. Applying Equation (2) to evaluate the
potential Vj at a point on conductor j gives

Vj ¼
X
i

%
Si

dQi

4pε0r
; (3)

where dQi represents the infinitesimal charge carried by an element
of the surface Si of the ith conductor. Since perfectly conducting
surfaces are equipotentials and Equation (3) is linear, the problem
boils down to finding the matrix linking the potentials of the
various conductors to the charges they carry, or its inverse capac-
itive matrix form

Qi ¼
X
j

CijVj: (4)

In this document, we investigate the coupling between two
pairs of electrodes. When an electrical dipole constituted by a pair
of electrodes is asymmetric, we define the smaller electrode as the
active and the larger one as the passive. Additionally, for studying
energy transport, one electrode pair is virtually connected (without
any field perturbations) to sinusoidal generator G while the other
electrode pair is connected to a load L. We examine the behavior of
such systems in different idealized configurations where simple
analytical solutions for the coupling coefficient can be derived.

2.2. Longitudinal slim model

In this configuration we consider flat disc-shaped electrodes
placed at distances that are small compared to the radii of elec-
trodes according to Fig. 2.

The passive electrodes have larger radii than either of the active
electrodes and the generator active is larger than the load active. We
may regard, in first approximation, that the electric field at any point
within the electrode structure is parallel to the longitudinal axis. In
this situation, according to Gauss’ theorem, the charges qij and �qij
borne by the overlapping area Aij of electrodes i and j, separated by
distance dij, are linked to their potentials Vi and Vj through

qij ¼ ε0
Vi � Vj

dij
Aij: (5)

The total charge carried by electrode i is obtained by summing
over all electrodes having a common facing area with it, giving

qi ¼
X4
j¼1

ε0
Aij

dij
Vij: (6)

In this expression, the coefficients of the potential differences
Vij represent the capacitances between facing areas of pairs of
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Fig. 1. Longitudinally coupled dipoles for WPT: (a) magnetic coupling and (b) electrical
coupling.
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Fig. 2. Longitudinal slim model (longitudinal dimensions are exaggerated for clarity).
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