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A B S T R A C T

Knowledge of electrical potential and energy is important to systems where electrostatic forces play a role. We calculate exactly the electrostatic potential of a
uniformly charged cylindrical shell at an arbitrary point in space as well as its electrical energy. The expressions derived are applicable to cylindrical models
containing charged particles and certain biological systems with cylindrical symmetry. An explicit analytical formula is provided for the total energy in terms of a
class of special functions known as generalized Hypergeometric functions. The expressions when written in one-dimensional integral form are very suitable for
numerical calculations.

1. Introduction

One of the most interesting problems in electrostatics is the calcu-
lation of the electrostatic potential created by either a finite system of
point charges, or by a macroscopic charged body [1–4]. This problem is
inherently linked to that of how much electrostatic energy is stored in
systems containing interacting charges [5–12]. Systems consisting of
point charges interacting with a Coulomb potential are widespread in
nature. Therefore, the calculation of the total electrostatic energy,
namely, the calculation of the Coulomb self-energy contained in such
systems is a problem of utmost importance in many physical disciplines.
While the methodology is well known, the possibility to obtain exact
analytic results depends heavily into the details of the system under
consideration, geometry and how charges are distributed [13,14]. This
means that, under general conditions, the problem is very difficult. As a
consequence, there are few analytic results that apply to systems with
an arbitrary number of point charges. Among few exceptions, we
mention the case of one-dimensional (1D) ionic crystals [15].

If charge distribution in a given object is characterized by some
charge density, the final answer to the question of what is the elec-
trostatic potential or energy of such a body hinges upon one's ability to
calculate the integral expressions for the related quantities. This is the
real world of charged bodies made of a variety of different materials
that can have any arbitrary shape or form. It turns out that solving the
problem of how charge ends up distributed in a conductor or an in-
sulator is analytically impossible if the body under consideration is
arbitrarily shaped. In addition to that, finding the equilibrium charge
distribution even in a regular body is not a simple problem in general
[16]. There are only few cases where the equilibrium charge distribu-
tion is known analytically and they comprise the likes of a thin two-

dimensional (2D) conducting disk or a three-dimensional (3D) con-
ducting spherical shell. Other scenarios, including the simple-looking
problem of what is the exact charge distribution along a 1D wire still do
not have a definitive answer [17–20]. A more realistic counterpart to a
1D wire system is either a solid cylinder with a given volume charge
distribution or a cylindrical shell, namely, an infinitely thin hollow
cylinder containing some surface charge distribitution over the lateral
surface.

These two systems are very important because many electric devices
contain either solid cylinders or cylindrical shells as their components.
The equilibrium charge distribution in such systems is impossible to
obtain analytically. Therefore, simplifying assumptions are needed.
Assuming a uniform charge distribution is often best. Alternatives in-
clude assuming a uniform potential (conducting material) and choosing
a simple, spatially varying charge distribution (linear, quadratic, etc.).
The assumption of uniform charge distribution over the volume of a
solid cylinder led to an analytic result for this particular case [21]. In
this work, we follow the same assumption and show that exact analytic
expressions are also possible for the case of a uniformly charged cy-
lindrical shell. A uniformly charged cylindrical shell model is a natural
extension of the uniformly charged ring model with the additional
benefit of incorporating a finite length in the third dimension. We in-
troduce mathematical transformations that rely on certain auxiliary
functions which enable us to calculate exactly the electrostatic potential
and the total energy stored in a uniformly charged cylindrical shell with
arbitrary length and radius (and no caps). These results can be useful to
numerical studies [22] or studies of finite systems of electrons caged,
for instance, in charged nano-tubes or charged nano-cylinders.

The article is organized as follows. In Section 2 we introduce the
model and explain the details of a mathematical method that leads to a
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closed form expression for the electrostatic potential created by a uni-
formly charged cylindrical shell at an arbitrary point in space. In Sec-
tion 3 we expand the earlier mathematical calculations and obtain an
exact analytical expression for the total electrostatic energy, the Cou-
lomb self-energy, contained in such a body. In Section 4 we briefly
discuss the key findings and present some concluding remarks.

2. Electrostatic potential of a uniformly charged cylindrical shell

We consider a uniformly charged infinitely thin hollow cylinder,
namely, a cylindrical shell with radius R and length L. The cylindrical
shell under consideration has no caps. The lateral surface of the cy-
lindrical shell is uniformly filled with positive charge, Q. Thus, the
surface charge density on the lateral surface of the cylindrical shell is
written as:

=σ Q
π R L2

. (1)

Because of the axial symmetry of the problem, we choose a cy-
lindrical system of coordinates where → = → +

→
r ρ k z is a 3D vector,

→ =
→

+
→

ρ i x j y is its 2D counterpart in polar coordinates and
→ → →
i j k, ,

are unit vectors for the x y z, , directions, respectively. For such a
choice, =x ρ φcos( ), =y ρ φsin( ) where = → ≥ρ ρ 0 and φ is the polar
angle. In a compact notation, we denote the 3D vector as → = →r ρ z( , ).
The coordinative system is chosen in such a way that the cylindrical
shell is represented by the following region/domain:

= ≤ ≤ ≤ ≤ρ R φ π z LΩ: ; 0 2 ; 0 . (2)

Consider an elementary charge ′dQ at the location, = ′
→′ →′
r ρ z( , )

somewhere on the lateral surface of the cylindrical shell. The elemen-
tary electrostatic potential created by ′dQ at some arbitrary point in
space represented by vector, → = →r ρ z( , ) can be written as:

= ′ −
→ → → ′

dV r k dQ r r( ) /e where ke is Coulomb's electric constant. A

schematic presentation of the system under consideration is given in
Fig. 1. The electrostatic potential created by the entire cylindrical shell
will depend on ρ and z (but not on φ due to axial symmetry) as well as
radius R and length L. Therefore, we denote it as V ρ z R L( , , , ) and
write:

∫ ∫ ∫=
′

−
= ′ ′

−
→ →′ → →′

V ρ z R L k dQ

r r
k σR dz dφ

r r
( , , , ) 1 ,e

e
L π

Ω 0 0

2

(3)

where Ω is the domain of integration in Eq. (2) and = ′
→′ →′
r ρ z( , ) is such

that ′ =
⎯ →⎯⎯⎯⎯
ρ R.

Integrals of this form are often encountered in studies of potential
theory, but closed form solutions are rarely possible. In order to cal-

culate the integral above, one expands −
→ →′
r r1/ using the following

formula (see pg. 565 of Ref. [23] or pg. 140 of Ref. [24]):

∫∑→ − → =
=−∞

+∞ ∞ − − −

r r
dk e J k ρ J k ρ e1 ( ) ( ) ,

m

i m φ φ
m m

k z z

1 2 0
( )
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(4)

where J x( )m are Bessel functions of the first kind of integral m-th order,
= −i 1 is the imaginary number and, as seen from the context, k is a

dummy variable (not to be confused with the unit vector,
→
k mentioned

earlier). Note that, for this specific case, → = →r r1 , =
→ →′
r r2 and

= ′ =ρ ρ R2 . At this juncture, it is straightforward to notice that in-
tegration over the angular variable, ′φ can be easily carried out re-
sulting in the expression:

∫ ∫= ′
∞ − − ′V ρ z R L k σ π R dz dk J k ρ J k R e( , , , ) (2 ) ( ) ( ) .e

L k z z
0 0 0 0

(5)

Note that: =k σ π R k Q L(2 ) /e e . Therefore, the result in Eq. (5) can
be written as:

∫=
∞

V ρ z R L k Q
L

dk J k ρ J k R g k z L( , , , ) ( ) ( ) ( , , ) ,e
0 0 0 (6)

where

∫= ′ − − ′g k z L dz e( , , ) ,
L k z z

0 (7)

represents an auxiliary function. The 1D integral expression in Eq. (6) is
compact and very convenient for numerical calculations. One may also
use it as a starting point to derive the corresponding result for a uni-
formly charged ring in the →L 0 limit. One can verify by L'Hôpital's
Rule that:

=
→

−g k z L
L

elim
( , , )

.
L

k z
0 (8)

Based on Eq. (8) one concludes that in the →L 0 limit one has:

∫= =
∞ −V ρ z R L k Q dk J k ρ J k R e( , , , 0) ( ) ( ) .e

k z
0 0 0 (9)

The result in Eq. (9) represents the electrostatic potential created by
a uniformly charged ring with radius R and charge Q [see Eq. (10) of
Ref. [25]].

From now on, we assume that ≠L 0. For this assumption, one has:

= − − ≠− + −g k z L
k

e e L( , , ) 1 (2 ) ; 0 .k z k z L( )
(10)

Note that = = =g k z L g k z L L( , 0, ) ( , , ). This is a reflection of the
fact that = = =V ρ z R L V ρ z L R L( , 0, , ) ( , , , ). The value of the elec-
trostatic potential on the lateral surface of the cylindrical shell can be
written as:

∫= ≤ ≤ =
∞

V ρ R z L R L k Q
L

dk J k R g k z L( , 0 , , ) [ ( )] ( , , ) ,e
0 0

2
(11)

Fig. 1. Schematic view of a uniformly charged cylindrical shell. The elementary

charge, ′dQ localized at
→′
r creates an elementary electrostatic potential at some

arbitrary point in space.
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