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a b s t r a c t

Proper selection of neutron exit channels following heavy-ion reactions is important in
nuclear structure physics. A knowledge of detector counts versus number of neutron inter-
action points per event can be useful in this selection. In this paper, we constructed layered
feedforward neural networks (LFNNs) consistent empirical physical formulas (EPFs) to esti-
mate the detector counts versus number of neutron interaction points per event. The
LFNN-EPFs are of explicit mathematical functional form. Therefore, by various suitable
operations of mathematical analysis, these LFNN-EPFs can be used to derivate further
physical functions which might be potentially relevant to neutron exit channel selection.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Proper selection of neutron exit channels following hea-
vy-ion reactions is important in nuclear physics. Different
techniques have been employed to correctly select exit
channels [1–6]. In [1–3], neutron detector arrays were
used and in [4–6], studies following fusion-evaporation
reactions were performed for the selection. Channel selec-
tion from heavy-ion reactions allows nuclear spectroscopic
studies of very weakly populated nuclei. The measurement
of the neutron multiplicities in these reactions is particu-
larly important in the rare-earth region where evaporation
of the neutrons is a dominant channel.

In this paper, based on the data obtained by specific
Monte Carlo simulations for varying neutron multiplicities,
we aimed to select heavy-ion reaction neutron exit chan-
nels. In this selection, we observed that knowledge of
detector counts versus number of neutron interaction
points per event could be useful. The detector we used in
this paper was a segmented HPGe planar detector. Note
that in our simulations, no ancillary detector was used be-
cause the detector we used was alone sufficient to obtain
the number of neutron interaction points.

The importance of this paper in neutron exit channel
selection is briefly as follows. The physics involved in neu-
tron interactions in the detector is highly nonlinear. There-
fore, in many cases it may be difficult to construct explicit
form of empirical physical formulas (EPFs) for nonlinear
detector count functions. These EPFs would then be used
for specific purposes in analyzing detector data. To over-
come EPF construction difficulties just mentioned, in this
paper we constructed consistent layered feedforward neu-
ral network (LFNN) [7] EPFs for counts. The LFNN-EPF con-
struction was solely based on our previous theoretical
treatment [8]. The LFNN-EPFs are of explicit mathematical
functional form. Therefore, by various suitable operations
of mathematical analysis, these LFNN-EPFs can be used to
derivate further physical functions which might be poten-
tially relevant to neutron exit channel selection.

2. Theories

2.1. The LFNN basics and its relevance detector counts EPFs

General LFNN-EPFs is analyzed in depth in our previous
work [8]. A number of specific LFNN-EPFs have been re-
ported, including radiation measurement application [9].
Still, here we again give the minimum LFNN fundamentals.
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We also mention briefly LFNN-EPFs in general and detector
counts LFNN-EPF in particular.

2.1.1. The LFNN basics
An artificial neural network (ANN) [7] mimics the brain

functionality and consists of interconnecting artificial neu-
rons which have adaptive synaptic weights. The ANN
learns new information by weight modification. LFNN, par-
ticular kind of ANN, is a one input-many intermediate (hid-
den)-one output layer device, all layers of which are
interconnected by adaptable weights (Fig. 1).

Theoretically speaking, a single hidden layer LFNN is
sufficient for excellent nonlinear function approximation
[10]. Therefore, in this paper we used single hidden layer
LFNNs. Also, for simplicity and without loss of generality;
we only explain the single hidden layer LFNN functionality,
although in Fig. 1, multi-layer LFNN is illustrated. Borrow-
ing from [10], for a LFNN with single hidden layer, in Fig. 1,
the desired output vector ~y is approximated by a network
multi-output vector ~f which is defined by the following
equation:

~f : Rp ! Rr :~f kð~xÞ ¼
Xh1

j¼1

bjkGðAjð~xÞÞ;~x 2 Rp;bjk 2 R;Aj

2 Ap
; and k ¼ 1; . . . ; r; ð1Þ

where Ap is the set of all functions of Rp ? R defined by
Að~xÞ ¼ ~w �~xþ b. ‘ � ’ is the scalar product, ~w is input to hid-
den layer weight vector,~x is the LFNN input vector in Fig. 1,
and b is the bias weight. In Fig. 1, the columns of the
weight matrices w1 and w2 correspond to weight vectors
defined in Að~xÞ and ~b in Eq. (1). However, as can be seen
from Fig. 1 and Eq. (1), the correspondences w1 ! Að~xÞ
and w2 !~b are valid only for single hidden layer LFNN.
For the multi-hidden layer LFNN, both Eq. (1) and the cor-
respondences must be altered accordingly. Another point
is that, in Eq. (1), the hidden neuron activation function

G:R ? R can be theoretically any well-behaved nonlinear
function; proving that a LFNN is a universal nonlinear
function approximator. In applications, G is frequently cho-
sen as a kind of nonlinear sigmoid function defined by the
following equation:

G : R! ½0;1� or ½�1;1�; non-decreasing; lim
k!1

GðkÞ ¼ 1;

and lim
k!�1

GðkÞ ¼ 0 or � 1: ð2Þ

By using the LFNN constructed in line with Eqs. (1) and
(2), sample train data is simultaneously presented to both
input and output layers. By a suitable modification algo-
rithm, the LFNN modifies its weights until an acceptable
error level between predicted and desired outputs is at-
tained. Then, by using LFNN of the final weights, the test
set performance of the network is tested over a previously
unseen data set. If test data predictions are good enough,
the LFNN is considered to have consistently learned or gen-
eralized the inherent functional relationship existing be-
tween input and output data.

2.1.2. LFNN relevance to the detector counts EPF construction
Since a deterministic or random EPF is usually a math-

ematical vector function ~y : Rp ! Rr between the physical
variables under investigation, particularly LFNN (not any
other ANN) is relevant to EPF construction. Therefore,
being a general input–output function estimator, the LFNN
defined by Eq. (1) is particularly relevant in this context.
But, in physics, although there can be several independent
variables [p � 1 in Eq. (1)], the number of the dependent
variables is usually one [r = 1 in Eq. (1)]. Train sample data
for independent and dependent physical variables are pre-
sented to the input and output layers respectively. Then,
after a suitable weight adaptation process, the LFNN finally
estimates the unknown generally nonlinear EPF. Note that
EPF is a general abstract term, and in this paper it is con-
cretely used for the detector counts (see, Section 3.4). It
must also be firmly stated that, depending on the number
of hidden layer, hidden units and the kind of activation
functions etc., we can construct infinitely many LFNN-EPFs,
all of which are compatible with Eqs. (1) and (2). But, as
shown in [8], in practice between these infinitely many
numbers of final approximation functions, any of them
can be safely chosen as the desired EPF. Before closing this
section, it is useful to point out that the ANN modeling has
an obvious superiority over some other well-known statis-
tical curve-fitting techniques, (see, for more [11]).

3. LFNN application details

3.1. The detector simulation data for LFNN-EPF counts

The LFNN-EPFs were constructed based on the data ob-
tained by the Geant4 [12] Monte Carlo simulation counts
resulted from neutron interactions in the detector. Here,
we think that it is necessary to explain briefly the reason
to construct a neural network based on a procedure like
Monte Carlo with an uncertainty in given outputs, can be
successful to predict an issue. The Monte Carlo techniques
are based on specific statistical distributions. Therefore,

Fig. 1. Fully connected one input-many hidden-one output layer LFNN.
Only two hidden layers are shown. xi(i = 1, . . .,p) and yi(i = 1, . . .,r) are,
respectively, input and output vector components. Circles: artificial
neurons, arrows: adaptable synaptic weights. wi

jk: weight vector compo-
nent, where i is a layer index, jk weight component from the jth neuron of
ith layer and to kth neuron of (i + 1)th layer. Hidden layer neurons are
respectively h1 and h2 .
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