
Combinatorial testing for software: An adaptation of design
of experiments

Raghu N. Kacker a,⇑, D. Richard Kuhn a, Yu Lei b, James F. Lawrence a,c

a National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
b University of Texas, Arlington, TX 76019, USA
c George Mason University, Fairfax, VA 22030, USA

a r t i c l e i n f o

Article history:
Available online 14 March 2013

Keywords:
Computer security
Covering arrays
Design of experiments
Measurement
Metrology
Orthogonal arrays
Software engineering
Software testing

a b s t r a c t

Software has become increasingly ubiquitous in tools and methods used for science, engi-
neering, medicine, commerce, and human interactions. Extensive testing is required to
assure that software works correctly. Combinatorial testing is a versatile methodology
which is useful in a broad range of situations to detect faults in software. It is based on
the insight that while the behavior of a software system may be affected by a large number
of factors, only a few factors are involved in a failure-inducing fault. We discuss the devel-
opment of combinatorial testing for software as adaptation of design of experiment meth-
ods. Combinatorial testing began as pairwise testing in which first orthogonal arrays and
then covering arrays were used to make sure that all pairs of the test settings were tested.
Subsequent investigations of actual software failures showed that pairwise (2-way) testing
may not always be sufficient and combinatorial t-way testing for t greater than 2 may be
needed. Until recently efficient tools for generating test suites for combinatorial t-way test-
ing were not widely available. Combinatorial testing has become practical because efficient
and free downloadable tools with support of constraints have become available.

Published by Elsevier Ltd.

1. Introduction

A software fault is a mistake in the code which when
encountered may cause the software to fail. Failure means
that the software behaves in unexpected (incorrect) ways.
A variety of testing methods are used to avoid, detect, and
correct faults during and after development of software. A
2002 report estimated that the cost to the US of inadequate
infrastructure for software testing was between $22.2 and
$59.5 billion [1]. In a decade since then software has be-
come more complex and the detection of faults has be-
come more challenging. An often used approach for
detecting software faults is dynamic testing in which the
software system under test (SUT) is exercised (run) for a
set of test cases, the expected (correct) behavior of the sys-
tem is predetermined for each test case, and the actual

behavior is compared against the expected. The SUT passes
a test case when the behavior is as expected and fails when
the behavior is different from the expected behavior. When
the SUT fails for one or more test cases the underlying
faults in the software which induce the failure are searched
and then corrected. The SUT could be any part of a software
system however small or large for which test cases can be
constructed, the expected (correct) behavior can be deter-
mined for each test case, tests executed, and the actual
behavior can be observed and assessed. Dynamic testing
is often used for independent verification and validation
of software systems.

Combinatorial testing is a type of dynamic testing in
which distinct (but possibly related) test factors are speci-
fied from the requirements, knowledge of system imple-
mentation and internal operations, and other information
available about the SUT. The possible values of test factors
may reside on continuous or discrete scales. In either case,
for each test factor relatively few discrete test settings are

0263-2241/$ - see front matter Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.measurement.2013.02.021

⇑ Corresponding author. Tel.: +1 301 975 2109.
E-mail address: raghu.kacker@nist.gov (R.N. Kacker).

Measurement 46 (2013) 3745–3752

Contents lists available at SciVerse ScienceDirect

Measurement

journal homepage: www.elsevier .com/ locate/measurement

http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2013.02.021&domain=pdf
http://dx.doi.org/10.1016/j.measurement.2013.02.021
mailto:raghu.kacker@nist.gov
http://dx.doi.org/10.1016/j.measurement.2013.02.021
http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement

specified by equivalence partitioning, boundary value anal-
ysis, and expert judgment. Then each test case is expressed
as a combination of one test setting for every test factor [2–
5]. Suppose the first test factor has v1 test settings, the sec-
ond test factor has v2 test settings, etc., and the k-th test
factor has vk test settings, where v1,v2, . . .,vk could be all
different. Then a test case is a combination of k test set-
tings, one for each test factor (a k-tuple). The number of
different test cases possible is the product of all k numbers
v1,v2, . . .,vk of test settings. For example, suppose out of
nine test factors, if 3 have three test settings each, 4 have
four test settings each, and 2 have five test settings each
then the number of possible test cases is
334452 = 1,72,800. The exponential expression 334452 rep-
resents the combinatorial test structure and its expanded
form 1,72,800 is the number of possible test cases. In many
practical applications the number of possible test cases is
too large to test them all. In combinatorial testing, combi-
natorial mathematics and computational methods are used
to determine a small set (called test suite) of test cases
which covers all test settings of each factor and all t-way
combinations (t-tuples) of test settings for some t P 2.
The value of t (called strength of the test suite) is chosen
with the objective that the test suite will exercise the com-
binations corresponding to the faults for which the SUT
could fail. Methods for specification of test factors, test set-
tings, and the strength t are largely application domain
specific and a subject of continuing research [4]. In this pa-
per we address the problem of constructing (generating)
the test suite after the test factors and the test settings
have been specified.

Orthogonal arrays (OAs) are tabular arrangements of
symbols which satisfy certain combinatorial properties.
In the1960s and1970s Japan and starting in the 1980s
in the US and Europe, Genichi Taguchi promulgated
the use of OAs (of strength two) as templates for De-
sign of Experiments (DoEs) [6–8]. In the late 1980s
and early 1990s, inspired in part by Taguchi, some
software engineers started investigating the use of
OAs for pairwise (2-way) combinatorial testing of soft-
ware and hardware–software systems. In Section 2, we
review the use of OAs for DoEs and software testing.
Soon the limitations of OAs to generate test suites for
software testing became apparent. Covering arrays
(CAs) are generalizations of OAs with slightly relaxed
combinatorial properties. Covering arrays were found
to be better suited than OAs for generating test suites
for software testing. In Section 3 we discuss the use of
CAs for pairwise (2-way) testing of software. Subse-
quent investigations of the reports of actual software
failures showed that pairwise (2-way) testing is useful
but it may not always be sufficient. Also, test factors
and test settings are subject to various types of con-
straints imposed by the semantics of the SUT and the
runtime environment. In Section 4, we discuss t-way
combinatorial testing (CT) for t P 2 with support of
constraints. Combinatorial testing for t P 2 is now
practical because efficient tools for generating test
suites for t-way testing with support of constraints
have become available. A brief summary appears in
Section 5.

2. Use of orthogonal arrays for design of experiments
and software testing

The concept of Orthogonal arrays (OAs) was formally
defined by Rao [9]. OAs are generalization of Latin squares
[10]. The matrix shown in Table 1 is an orthogonal array
(OA) referred to as OA(8, 24 � 41, 2). The first parameter
(which is 8) indicates the number of rows and the second
parameter (which is 24 � 41) indicates that there are five
columns of which four have 2 distinct elements each, de-
noted here by {0,1}, and one column has 4 distinct ele-
ments, denoted here by {0,1,2,3}. The third parameter
(which is 2) indicates that this OA has strength 2, which
means that every set of two columns contains all possible
pairs of elements exactly the same number of times. Thus
every pair of the first four columns contains the four pos-
sible pairs of elements {00,01,10,11} exactly twice and
every pair of columns involving the fifth column contains
the eight possible pairs of elements
{00,01,02,03,10,11,12,13} exactly once. In an OA of
strength 3, every set of three columns contains all possible
triplets of elements exactly the same number of times.

A fixed-value orthogonal array denoted by OA(N,vk, t) is
an N � k matrix of elements from a set of v symbols
{0,1, . . ., (v � 1)} such that every set of t-columns contains
each possible t-tuple of elements the same number of
times. The positive integer t is the strength of the orthogo-
nal array. In the context of an OA, elements such as
0,1,2, . . ., (v � 1) used in Table 1 are symbols rather than
numbers. The combinatorial property is not affected by
the symbols that are used for the elements. Every set of
three columns of a fixed value orthogonal array of strength
2 represents a Latin square (one column representing the
rows, one column representing the columns and the third
column representing the symbols). A mixed-value orthog-
onal array is an extension of fixed-value OA where
k = k1 + k2 + . . . + kn; k1 columns have v1 distinct elements,
k2 columns have v2 distinct elements, etc., and kn columns
have vn distinct elements, where v1,v2, . . .,vk are different.
Mathematics of OAs and extensive references can be found
in [11]. Neil Sloane maintains an electronic library of
known OAs [12].

The term design of experiments (DoEs) refers to a meth-
odology for conducting controlled experiments in which a
system is exercised (worked in action) in a purposeful (de-
signed) manner for chosen test settings of various input
variables (called factors). The corresponding values of one
or more output variables (called responses) are measured

Table 1
Orthogonal array OA (8, 24 � 41, 2).

1 2 3 4 5

1 0 0 0 0 0
2 1 1 1 1 0
3 0 0 1 1 1
4 1 1 0 0 1
5 0 1 0 1 2
6 1 0 1 0 2
7 0 1 1 0 3
8 1 0 0 1 3

3746 R.N. Kacker et al. / Measurement 46 (2013) 3745–3752

Download English Version:

https://daneshyari.com/en/article/10407389

Download Persian Version:

https://daneshyari.com/article/10407389

Daneshyari.com

https://daneshyari.com/en/article/10407389
https://daneshyari.com/article/10407389
https://daneshyari.com

