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a b s t r a c t

Extracting the underlying trends is an important tool for the analysis of signals. This paper
presents a novel methodology for extracting the underlying trends of signals based on the
separations of consecutive empirical mode decomposition (EMD) components in the Hil-
bert marginal spectrum. A signal is initially represented as a sum of intrinsic mode func-
tions (IMFs) obtained via the EMD. The Hilbert marginal spectrum of each IMF is then
calculated. The separations of two consecutive IMFs in the Hilbert marginal spectrum
are estimated based on their correlation coefficients. The group of the last several IMFs
in which the IMFs are close to each other in the Hilbert marginal spectrum will be used
for the representation of the underlying trend of the signal. Extensive experimental results
are presented to illustrate the rationale and the effectiveness of the proposed method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Time series often consists of global changes and irregu-
larities. Typically, the underlying trend of a signal refers to
these global changes [1]. Extracting the underlying trends
plays an important role in the analysis of signals from
industrial turbines [2], power systems [3], plant industries
[4], economics [5] and biomedical sciences [6,7].

Existing methods for extracting the underlying trends
of signals can be broadly divided into three distinct catego-
ries viz. model based approaches [8], signal processing
methods [9,35,36] and nonparametric trend prediction
methods [10]. Among them, the signal processing methods
are the most promising approach.

Lowpass filtering is the oldest method [23] for extract-
ing the underlying trends of signals. However, lowpass fil-
tering is a linear time invariant method. The averaging
effect introduced by the weighted sum in the convolution
operator will result to the failure of tracking sudden jumps

in the signals. This effect is particular serious if the filter
lengths are long. For filters with short lengths such as the
filters with the impulse responses only consisting of three
points (the previous point, the current point and the future
point), they have extremely poor frequency responses
[23,25–34]. That means, both the passband ripples and
the stopband ripples are very large. Hence, the filters can-
not get rid of the noise and allow irregularities to pass
through. Also, the filters will introduce the delays to the
signals and there are boundary effects. Although the delays
introduced by the lowpass filtering can be compensated
easily as well as the passbands and the stopbands of the fil-
ters can be changed, the changes on the passbands and the
stopbands are signal dependent in which the required
adaptive changing rules are too complicated to be imple-
mented in practical situations.

Recently, it is found that the underlying trends of some
signals can be extracted by only retaining the last intrinsic
mode function (IMF) obtained by the empirical mode
decomposition (EMD) which is a powerful tool for analyz-
ing nonlinear and non-stationary signals [12–22]. Since the
last IMF is always monotonic, this approach fails to extract
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the underlying trends of many signals [13] such as those
with the underlying trends are not monotonic. In general,
more than one IMF should be retained. However, there
does not exist any method for the analysis of the EMD
and for the adaptive selection of these IMFs. This problem
still remains unsolved and it is challenging.

This paper proposes a novel methodology for extracting
the underlying trends based on the separation of the EMD
components represented in the Hilbert marginal spectrum.
The outline of this paper is as follows. Section 2 briefly
reviews the algorithm of EMD and the definition of the
Hilbert marginal spectrum. In Section 3, a novel methodol-
ogy for extracting the underlying trends based on the
separation of the EMD components represented in the
Hilbert marginal spectrum is proposed. Section 4 presents
experimental results. Finally, a conclusion is drawn in
Section 5.

2. Review on the EMD of signals and the definition of the
Hilbert marginal spectrum

2.1. EMD

The EMD of signals is based on the direct detection of
the envelops of the signals. Since this decomposition is
based on the local time scale characteristic of the signals,
it is applicable to nonlinear and nonstationary processes.
In principle, a signal is represented via the sum of IMFs,
from which the instantaneous frequencies can be analyzed
using the Hilbert transform. The definition of the IMF is as
follows [11]:

Definition 1. IMF A function is considered as an IMF if it
satisfies the following two conditions: (1) the number of
extrema and the number of zero crossing points are equal,
or their difference is no more than 1; and (2) its local mean
is zero.

Given a signal x(t), where t e R, the principle of the EMD
of x(t) can be interpreted as follows.

(1) Initialization: r0(t) = x(t) and i = 1.
(2) Compute the ith IMF ci(t) using the following itera-

tive procedure:
(a) Let d0(t) = ri�1(t) and j = 1;
(b) Identify all the local maxima and minima of

dj�1(t);
(c) Generate the upper and lower envelopes of

dj�1(t) using the cubic spline interpolation
(typically), denoted as eup(t) and elow(t);

(d) Calculate the local mean by m(t) = (eup(t) + elow

(t))/2;
(e) Sifting: dj(t) = dj�1(t) �m(t);

(f) If SD ¼
R

t
jmðtÞj2

jdj�1ðtÞj2
dt < j (j is usually selected as

0.3), then let ci(t) = dj(t) and go to step (3); other-
wise, increment the value of j and go back to step
(b).

(3) Let ri(t) = ri�1(t) � ci(t).
(4) If ri(t) satisfies the properties of IMF or it is a mono-

tonic function, then the decomposition is complete;

otherwise, increment the value of i and go back to
step (2).

When the decomposition is complete, the original sig-
nal can be represented as:

xðtÞ ¼
Xn

i¼1

ciðtÞ þ rnðtÞ: ð1Þ

Here, consider the final rn(t) as an IMF denoted as cn+1(t), so
we have

xðtÞ ¼
Xnþ1

i¼1

ciðtÞ: ð2Þ

The EMD of a signal results to a finite set of IMFs with
each based on a distinct time scale. Since the decomposi-
tion is based on the nature of the signals, it is an adaptive
signal decomposition algorithm. The first component has
the smallest time scale and it typically corresponds to
the noise parts of the signal. As the decomposition pro-
ceeds, the time scale increases. The last component has
the largest time scales. It typically corresponds to the
underlying trend of the signal.

2.2. Hilbert marginal spectrum

Having decomposed a signal into a finite number of
IMFs, the instantaneous frequencies of the signal can be
calculated via the Hilbert transform [11]. The Hilbert trans-
form is initially applied to each IMF ci(t) as follows:

ziðtÞ ¼ ciðtÞ þ j~H½ciðtÞ� ¼ aiðtÞejhiðtÞ; ð3Þ

where the Hilbert transform is defined as

~H½ciðtÞ� ¼
1
p

P
Z 1

�1

ciðt’Þ
t � t’

dt’; ð4Þ

and P indicates the Cauchy principal value. Clearly,

aiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðciðtÞÞ2 þ ð~H½ciðtÞ�Þ2

q
and hiðtÞ

¼ arctan
~H½ciðtÞ�

ciðtÞ

 !
; ð5Þ

are the instantaneous amplitude and phase of ci(t), respec-
tively. Hence, x(t) can then be expressed as

xðtÞ ¼ Re
Xnþ1

i¼1

aiðtÞejhiðtÞ

 !
: ð6Þ

From (5), the instantaneous frequency of ci(t) is denoted as
xi(t) and it is defined as

xiðtÞ ¼
dhiðtÞ

dt
: ð7Þ

From (6), it can be seen that the IMF representation pro-
vides a generalized form of the representation of signals
such includes the Fourier series representation, but
circumvents the restriction of constant amplitude and
fixed harmonic frequency of the Fourier series
representation.
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