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a b s t r a c t

Correlated responses can be written in terms of principal component scores, but the uncer-
tainty in the original responses will be transferred and will influence the behavior of the
regression function. This paper presents a model building strategy that consider the mul-
tivariate uncertainty as weighting matrix for the principal components. The main objective
is to increase the value of R2 predicted to improve model’s explanation and optimization
results. A case study of AISI 52100 hardened steel turning with Wiper tools was performed
in a Central Composite Design with three-factors (cutting speed, feed rate and depth of cut)
for a set of five correlated metrics (Ra, Ry, Rz, Rq and Rt). Results indicate that different mod-
eling methods conduct approximately to the same predicted responses, nevertheless the
response surface to Weighted Principal Component – case b – (WPC1b) presented the high-
est predictability.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The uncertainty’s measurement is a problem that af-
fects the result’s accuracy. Pérez [1] affirms that the uncer-
tainties’ measurement can both affect the response
variable (y) and the predictor variables (x). Ignoring these
uncertainties makes inefficient the results obtained
through any design of experiments.

Correlated response may be written in terms of princi-
pal component scores. The uncertainty contained in the
original responses will contaminate the principal compo-
nents through the transfer function. The presence of corre-
lation greatly influences the model building tasks causing

its instability and provoking errors in the regression coeffi-
cients. In other words, the regression equations are not
adequate to represent the objective functions without con-
sidering the variance–covariance (or correlation) structure
[2,3]. The later aspect of the multi objective optimization is
the influence of the correlation among the responses over
the global solution. As pointed out by some researchers
[4–6] the individual analyses of each response may lead
to a conflicting optimum, since the factor levels that im-
prove one response can, otherwise, degrade another.

Wang [7] confirms that median or high correlations
existing among multiple responses significantly affect the
product quality and these correlations must be considered
when resolving the optimizing problem of multiple re-
sponses. Chiang and Hsieh [8] considered the correlation
between quality characteristics and applied the principal
component analysis to eliminate the multiple colinearity.
McFarland and Mahadevan [9] affirmed that large correla-
tion suggest that the parameters can be characterized
using a reduced set of variables and the standard method
for finding such a reduced set is PCA.
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Tong et al. [10] used PCA to simplify the optimization
process and multi-response problems and concluded that
the procedure is valid with some modifications. Wentzel
and Lohanes [11] applied a procedure based on the method
of Maximum Likelihood Principal Component Analysis
(MLPCA) to include measurement error covariance in mul-
tivariate decomposition. The method is similar to conven-
tional PCA, but it considers the uncertainty’s measurement
in the process placing less emphasis on measurements
with large variance. Bratchell [12] employed a second-
order response surface based on PCA to adequately repre-
sent the original set of responses in a small number of
latent variables. The Bratchell’s approach do not present
alternatives for the cases where the largest principal com-
ponent is not able to explain the most part of variance as
well as do not indicate how the specification limits and tar-
gets of each response could be transformed to the plane of
principal components. In spite of these gaps, the use of
PCA’s to overcome the correlation influence is very exten-
sive in the machining literature, mainly associated with
Taguchi designs [13,14].

PCA has become an indispensable tool for multivariate
analysis in areas such as exploratory data analysis, model-
ing, mixture analysis and calibration, but the major weak-
ness of this approach, however, is that it makes implicit
assumptions about measurement errors which are often
incorrect. This corrupts the quality of information provided
and may lead to erroneous results [15].

In this context, this study proposes a model building ap-
proach to estimate the total uncertainties’ measurement
that affects all response variables (Y = f(x1, x2, . . . , xk)),
using the inverse of multivariate uncertainty as weighting
matrix for principal components scores used to replace the
set of correlated variables in a set of uncorrelated ones. The
main objective of this proposal is to achieve a satisfactory
variance explanation, making the prediction R2 as higher as
possible, once it is useful in assessing the prediction ability
of models [16]. After the uncertainty correction, a multi-
objective optimization method – based on the concept of
Multivariate Mean Square Error (MMSE) – was used to im-
prove the multiple correlated characteristics combining
PCA and RSM.

To illustrate the proposal, Wiper CNGA120408
S01525WH inserts were used in a AISI 52100 hardened
steel turning operation.

2. Development of the method

Correlated variables can always be replaced by principal
components scores without significative loss of informa-
tion. Additionally, the rotation of axes which PC’s represen-
tation can also be used to improve the variance–covariance
explanation.

Then, to develop a WPCR (Weighted Principal Compo-
nent Regression) method using the uncertainties’ measure-
ment or the experimental variance and evaluate how the
weighting and rotation can influence the determination
of the regression coefficients, this approach combines
PCA, Factor Analysis (FA) and Weighted Least Square
(WLS) in the model building task.

The principal component analysis is one of the most
widely applied tools used to summarize common pat-
terns of variation among variables. Supposed that f1(x),
f2(x), . . . , fp(x) are correlated with values written in
terms of a random vector YT = [Y1, Y2, . . . , Yp]. Assuming
that R is the variance–covariance matrix associated to
this vector then R can be factorized in pairs of eigen-
values–eigenvectors ðki; eiÞ; . . . P ðkp; epÞ, where k1 P k2

P . . . P kp P 0, such as the ith uncorrelated linear
combination may be stated as PCi ¼ eT

i Y ¼ e1iY1þ
e2iY2 þ � � � þ epiYp with i = 1, 2, . . . , p. The ith principal
component can be obtained as maximization of this lin-
ear combination [17]. According Antony [18] the princi-
pal components are created in order of decreasing
variance, so that the first principal component accounts
for most variance in the data, the second principal com-
ponent less, and so on. Thus this is able to retain mean-
ingful information in the early PCA axes. The geometric
interpretation of these axes is shown in Fig. 1.

Generally, as the parameters R e q are unknown the
sample correlation matrix Rij and the sample variance–
covariance matrix Sij may be used [17]. If the variables
studied are taken in the same system of units or if they
are previously standardized, Sij is a more appropriate
choice. Otherwise, Rij must be employed in the factoriza-
tion. The sample variance–covariance matrix can be writ-
ten as follows:

Sij ¼

s11 s12 � � � s1p
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..

. ..
. . .

. ..
.
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Then, the elements of sample correlation matrix Rij can
be obtained as:
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In practical terms, PC is an uncorrelated linear combina-
tion expressed in terms of a score matrix, defined by John-
son and Wichern [17] as

PCk ¼ ZTE ¼
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