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a b s t r a c t

In support vector machine (SVM), it is quite necessary to optimize the parameters which
are the key factors impacting the classification performance. Improved ant colony optimi-
zation (IACO) algorithm is proposed to determine the parameters, and then the IACO-SVM
algorithm is applied on the rolling element bearing fault detection. Both the optimal and
the worst solutions found by the ants are allowed to update the pheromone trail density,
and the mesh is applied in the ACO to adjust the range of optimized parameters. The exper-
imental data of rolling bearing vibration signal is used to illustrate the performance of
IACO-SVM algorithm by comparing with the parameters in SVM optimized by genetic algo-
rithm (GA), cross-validation and standard ACO methods. The experimental results show
that the proposed algorithm of IACO-SVM can give higher recognition accuracy.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the modern production, fault diagnosis technology of
mechanical equipment is increasingly important. If a de-
vice failure is not discovered and eliminated timely, it will
cause mechanical damage and serious death. Therefore,
the status of fault diagnosis in the production line should
not be neglected.

Rolling element bearings consist one of the most widely
used industrial machine elements, and it is the interface
between the stationary and the rotating part of the ma-
chine. It is important to give a fast and accurate detect of
the existence of a fault in an installation during the opera-
tion process, since an unexpected failure of machine can
lead to unacceptably long time maintenance stops [1]. Sta-
tistics show, about 30% of the rotating machinery faults are
caused by the damage of the bearings. Therefore as one of
the important parts of the running mechanical bearing, we
have to improve the detecting ability of fault diagnosis.

The early rolling failure diagnostic methods include the
use of hearing, shock pulse and resonance demodulation
technologies. However, the accuracy and efficiency of
these diagnostic methods cannot reach the standard of
the industry level. With the continuous development of
diagnostic techniques, artificial intelligence , such as ex-
pert system, artificial neural network (ANN), fuzzy logic,
immune genetic algorithm have been widely used in ma-
chine fault diagnosis [2–9]. These methods are based on
the empirical risk minimization principle, and there are
some common shortcomings, such as relapsing into local
minimum easily and slow convergence velocity and over-
fitting. Especially, generalization ability in a limited num-
ber of samples is too low. When using the artificial intelli-
gence in the fault diagnosis, the lack of fault samples is the
bottleneck problem. Low generalization ability can lead to
wrong fault diagnosis results. Comparing with these meth-
ods, support vector machine (SVM) can perform significant
well when facing with those limited factors.

SVM is a new machine learning method based on the
structural risk minimization (SRM) principle, the purpose
of which is to solve classification problems by maximizing
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the margin between the two opposing classes. SVM can
solve the problem of model selection, over-fitting, nonlin-
ear, the curse of dimensionality and local minimum in a
better way [10,11]. It embodies the SRM principle that
has achieved higher generalization performance with
small number of samples and is shown superior to the
empirical risk minimization that neural networks use.
The introduction of the kernel function is a major advan-
tage of the support vector machine. It endows with SVM
the ability to deal with nonlinear classification problem
by mapping the nonlinear feature space to high dimen-
sional feature space to solve linear problem. The study
found that different kernel functions have little effect on
the performance of SVM, but the impact of the choice of
parameters in different kernel functions on the perfor-
mance of SVM is huge. Penalty factor C weighting the pro-
portion between experience risk and confidence range is
also a key factor affecting the performance of SVM. At pres-
ent, there are many methods for optimizing these parame-
ters, such as genetic algorithm, artificial immune
algorithm, ant colony algorithm, particle swarm [12–20].

An ACO-based algorithm for parameter optimization of
support vector machines was proposed by Zhang et al. [15].
The new state transition rule that ants build solution by
applying a probabilistic decision policy to move adjacent
states and the improved state updating rule that only applied
to that subset of parameters were used to enhance the per-
formance. The state transition rule increases the diversity
of solutions as well as the possibility of non-optimal solu-
tion. The improved state updating caused that the phero-
mone on the line of local optimal solution increases so fast
that the algorithm is prone to fall into local extremum.

An improved ant colony optimization (IACO) algorithm
for optimizing the parameters in SVM is presented in this pa-
per. In the IACO, ant chooses several grid points with largest
pheromones from the random selected points. While the
way of updating pheromone trail density is changed, that
is to say, increasing pheromone which is close to the optimal
solution during the iteration, at the same time reducing
pheromone which is close to the worst solution. Reasonable
selection of meshing upper and lower bounds can improve
the convergence rate. The IACO can reduce the blindness in
the selection of parameters in SVM, and therefore obtains
a higher diagnosis accuracy and convergence speed than
other parameter optimization methods such as the cross
verification trial and genetic algorithm.

The rest of this paper is organized as follows. In Sec-
tion 2, we will give a brief introduction to the theory of
SVM. Basic idea of ACO and the optimization procedure
to the SVM parameters are presented in Section 3. In Sec-
tion 4, we first describe how to choose the feature sets
and the model parameters, and then the detailed compar-
ative experiment is done to illustrate the performance of
IACO-SVM by comparing with other optimization methods.
Finally, this paper concludes with a summary in Section 5.

2. Support vector machine (SVM)

The support vector machine is a machine learning algo-
rithm based on the structured risk minimization principle.

There are many advantages in SVM including complete
theory, strong adaptability, global optimization, insensitive
to the dimension, shorter training time and good general-
ization performance. The basic idea of SVM to is construct
optimal separating hyperplane and maps the training sam-
ples from the input space into a higher dimensional feature
space via a mapping function u.

Give a training set fðxi; yiÞg
l
i¼1, xi 2 Rn; yi 2 f1;�1g,

where xi is the input vector and yi is the label of the xi,
and l is the number of the input vectors and n is the num-
ber of input dimension. Structure hyperplane is
w � xþ b ¼ 0, besides in order to meet the SRM principle
the classification hyperplane should satisfy

yðw � xþ bÞP 1 ð1Þ

where w is the normal direction of a separation plane, and
b is the scalar. Since the distance between the closest sam-
ple points and a separation plane is 1=jjwjj, the process of
finding the optimal separation plan is to minimizejjwjj2.
Therefore the problem of constructing the optimal hyper-
plane is transformed into the following quadratic program-
ming problem:

min
x

1
2 jjwjj

2

s:t: yiðw � xi þ bÞP 1; i ¼ 1; . . . ; l
ð2Þ

In most instances, problems could not be separated lin-
early, therefore some training sample points do not satisfy
the constraint conditions. To obtain the optimal classifier,
jwj should be minimized under the following constraints

yiðw � xi þ bÞP 1� fi; i ¼ 1; . . . ; l ð3Þ

The variables fi are positive slack variables, which is
necessary to allow misclassification. The objective function
will produce the classification error, so we introduce a gen-
eralization parameter C. The objective function and the
constraints transformed into the following problem:

min
w b f

1
2 jjwjj

2 þ C
Xl

i¼1

fi

s:t: yiðw � xi þ bÞP 1� fi fi P 0; i ¼ 1; . . . ; l

ð4Þ

The greater we set the generalization parameter, the
higher the misclassification error will be, as well as the
heavier of the punishment.

According to Lagrangian principle, the above problem
can be transformed to its dual form as follows:

min
a

1
2

Xl

i¼1

Xl

j¼1

yiyjaiajðxi � xjÞ �
Xl

j¼1

aj

s:t:
Xl

i¼1

yiai ¼ 0 ai P 0 i ¼ 1; . . . ; l

ð5Þ

By introducing the mapping function, the sample space
is mapped into a high dimensional feature space. The opti-
mization problem can be rewritten in the form

min
a

1
2

X1

i¼1

Xl

j¼1

yi yjaiajkðxi � xjÞ �
Xl

j¼1

aj

s:t:
Xl

i¼1

yiai ¼ 0 ai � 0i ¼ 1; . . . ; l

ð6Þ
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