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a b s t r a c t

The focus of the present review paper is the interpretation and estimation of the measure-
ments based in higher-order statistics both in the time and in the frequency domains; and
is concerned with statistical signal processing applied in scientific methods. Throughout
the work, the mathematical expressions are expanded in order to get a practical interpre-
tation of the estimators and the resulting data structures. A comprehensive selection of the
estimators allows the interpretation and the assessment of the numerical and graphical
results. The developed expressions complement the examples, giving rise to a practical
approach. Conveniently bricked within the sections, an ensemble of tests has been con-
ducted, in which non-Gaussian processes show the need of a higher-order characterization.
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1. The reasons for using HOS

In real-life measurement scenarios, non-expected devia-
tions from the forecasted behavior are frequent, and getting
an accurate performance of the electronic measurement

equipment implies the calculation of as many statistical
estimators as possible, specially in control and surveillance
applications, dealing with low level signals from sensors,
very susceptible to noise. This premise is also present in
Nature’s modeling, whose complexity implies the implicit
use of accurate models, in order to get more understand-
ability of the phenomena under study. As a consequence,
computational complexity is increased substantially.

It is assumed that the default characterization for the
measured data sequences is sustained in the traditional sta-
tistical density functions, like the normal distribution.
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Gaussian processes are completely characterized by the
autocorrelation sequence and its associated Fourier trans-
form, the power spectrum, in the time and in the frequency
domains, respectively. Nevertheless, these complementary
estimators, which involve the time-domain product of two
sequences of measurements, offer only a primary character-
ization of the measured data; e.g., in the power spectrum
estimation, discrimination among phases of the frequency
components is not possible. Consequently, there are numer-
ous situations where we have to look beyond the autocorre-
lation in order to get extra information, regarding deviations
from Gaussian behavior and non-linear characterization.
These supplementary features help to distinguish among
apparently similar measurement data structures, therefore
getting the complete statistical characterization [1,2].

Time-domain estimators which have been obtained
after multiplied more than two time-series, are called high-
er-order statistics. Their Fourier transforms are called poly-
spectra, and they contain additional information; e.g., the
phase of the frequency components. The power spectrum
(second-order spectrum) is a particular case of higher-or-
der spectra. The third-ordered is called the bi-spectrum
and the fourth-order spectrum is called the tri-spectrum.

In a simplistic manner, cumulants of order higher than 2
are all zero in signals with Gaussian probability density
functions, i.e.; all cumulants of the normal distribution be-
yond the second are zero. Similarly, higher cumulants are
blind to any kind of Gaussian process. This is why it is not
possible to separate these signals using the statistical ap-
proach [3]. These premises are present in almost all HOS
applications. In fact, these higher-order cumulants, are
used to infer new properties about the data involved in
non-Gaussian processes [3,4]. Prior to cumulants, due to
the lack of analytical tools, such processes had to be treated
as if they were Gaussian. To sum up, cumulants, in the time
domain, and their associated Fourier transforms, known as
poly-spectra, reveal information about amplitude and
phase, whereas second order statistics (power, variance,
covariance and spectra) are phase-blind [4].

The goal of this work is to explore and review HOS with a
twofold purpose. By one side, mathematical expressions for
the cumulants sequences have been expanded in order to
get a more comprehensive view of the graphical representa-
tions of the data structures. Secondly, several examples are
integrated in the work to show interpretation techniques
regarding the results with cumulants and the practical limits
of the measurement algorithms. The paper is structured as
follows: in Section 2 a thorough revision is performed, gath-
ering details and tricks when dealing with expressions. The
following Section 3, provides with techniques to deal with
multiple measurement channels. In this section, the statisti-
cal processes are characterized by using 3rd and 4th-order
cumulants’. Section 4 comprises higher-order spectra and
it shows a bi-spectrum estimator for quadratic phase cou-
pling detection, and the performance of an estimator of the
Spectral Kurtosis (SK) over a set of synthetic signals, which
clearly shows the capability of noise rejection by HOS, along
with performance issues regarding the recommended num-
ber of averaged data-registers (measurement realizations).
Section 5 shows performance of HOS dealing with multi-
dimensional data, which complements the example out-

lined in Section 4, and introduces the reader to the need of
higher-order characterization and to the multi-dimensional
data structures associated to HOS. Finally, conclusions are
drawn in Section 6.

2. Statistical definitions of cumulants and moments

A continuous random variable X-mean l; variance r,
and probability density p(x)-is completely characterized
by its moments and cumulants. Moments are defined using
the moment-generating function M(t) � E[etX],2 and the
McLaurin series. Similarly, cumulants are defined using the
cumulant-generating function, K(t), which is the Neperian
logarithm of M(t) [5]:

KðtÞ � log½MðtÞ� ¼
X1
r¼1

jr
tr

r!
¼ lt þ r2 t2

2!
þ � � � ; ð1Þ

where it is assumed the existence of an h > 0, h 2 R, such
that for jtj < h; the existence of K(t) is guaranteed. The first
derivative, K(1)(t), and its polynomial expansion is detailed
in the following equation:

Kð1ÞðtÞ ¼
X1
r¼0

jrþ1
tr

r!
¼ l|{z}

Kð1Þð0Þ¼j1

þ r2|{z}
Kð2Þð0Þ¼j2

t þ � � � ;

j1 ¼ Kð1Þð0Þ ¼ l;

j2 ¼ Kð2Þð0Þ ¼ r2;

� � �
jr ¼ KðrÞð0Þ:

ð2Þ

The coefficients of Eq. (2), are the cumulants; i.e. gener-
ically, jr = K(r)(0), is the rth-order cumulant [5].

While it is immediate to interpret cumulants up to a de-
gree of 2, the higher-order cumulants are neither moments
nor central moments, but rather more complicated polyno-
mial expressions of the moments. They are related to each
other via a recursive formula, described in the following
equation:

jr ¼ l0r �
Xr�1

k¼1

r � 1
k� 1

� �
jkl0r�k: ð3Þ

As an example, and resulting from Eq. (3), the rth-order
moment, l0r , is an rth-degree polynomial in the first r
cumulants3:
l01¼j1;

l02¼j2þj2
1;

l03¼j3þ3j2j1þj3
1;

l04¼j4þ4j3j1þ3j2
2þ6j2j2

1þj4
1;

l05¼j5þ5j4j1þ10j3j2þ10j3j2
1þ15j2

2j1

þ10j2j3
1þj5

1;

l06¼j6þ6j5j1þ15j4j2þ15j4j2
1þ10j2

3

þ60j3j2j1þ20j3j3
1þ15j3

2þ45j2
2j

2
1þ15j2j4

1þj6
1;

� � � ;
ð4Þ

2 E[�] is the expectation value operator.
3 The apostrophe corresponds to non-central moments.
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