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Computing numerical approximations of the Huygens-Fresnel principle in three dimen-
sions is demanding in terms of time and hardware, but thanks to massive parallelization
in GPGPU-enabled graphics cards these computations can be sped up considerably. Our
newly developed software framework is capable of simulating many wave propagation-
related problems. Although it was initially intended to generate laser speckle images for
various real physical setups used to measure the surface roughness of sheet metal and/
or the oil film thickness upon it, it turned out to also be suitable for larger setups and aper-
Huygens-Fresnel integral tures. This paper gives a short overview of the underlying physical angl mathematicgl con-
Laser speckle simulation framework cepts and elaborates on the strengths and weaknesses of the numerics. We describe the
GPGPU theoretical background of rough wetting and the core parts of the software. Further, we
Surface roughness present several test cases using apertures and their known Fraunhofer diffraction patterns
Rough wetting and objective speckle patterns generated for rough surfaces.
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1. Introduction and motivation

Corrosion of iron and its alloys, commonly termed
“rust”, can be a serious problem in automotive sheet metal
production. In finished products, the metal is usually
coated by varnish or some other protective coating. Prior
to this, the metal is often protected by a thin film of oil,
whose thickness is of concern to sheet steel manufactur-
ers: a minimum thickness is required for protective pur-
poses, but excessive thickness affects subsequent
processes and incurs unnecessary costs.

Numerous methods for determining the layer thickness
of fluids on smooth surfaces exist, for example, techniques
based on changes in capacitance [1], Raman backscattering
[2], the temperature gradient [3], or ultrasound [4].
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However, if the surface is rough and the film thickness is
in the range of its roughness, the film fills in the pits and
grooves of the surface such that adhesive forces between
the materials and cohesive forces within the film reach
an equilibrium. Since film thickness varies greatly over
small distances, integral effects such as changes in capaci-
tance, or principles based on long wavelength radiation,
yield unreliable results due to their relatively low spatial
resolutions.

The theory of rough wetting appears to offer a solution,
as Andelman et al. [5,6] established a connection between
the profile of the surface/fluid interface of an oil-covered
rough plane and the profile of the fluid/air interface atop.
It was found that the liquid acts as a low-pass filter to
the underlying surface roughness: the wet surface appears
to become smoother as the film thickness increases, and
roughness measurements can provide information about
film thickness.

Evaluations by Lettner and Zagar [7] focused on laser
speckle techniques [8,9] to measure surface roughness
and thus oil film thickness locally. Various measurement
setups were devised and thoroughly tested, but their
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adjustment and evaluation proved to be tedious. The wish
to simulate experimental outcomes soon arose and led to
the development of the custom software toolbox presented
in this paper.

Numerical laser speckle simulations, such as those gi-
ven by Goodman [10] and Equis and Jacquot [11], often
use relations in the Fourier domain which make inherent
use of the Huygens-Fresnel principle under a paraxial
approximation. Since diffuse reflections of laser light on a
rough surface do not satisfy this assumption, a numerical
approximation of the Huygens-Fresnel principle in the spa-
tial domain forms the core part of our approach. It involves
a summation over all elements of an electromagnetic field
within an aperture plane to compute the field in a single
arbitrary location in another plane of interest. Only mild
approximations are used which affect the computed result:
a discretization of both electromagnetic fields and the use
of finite precision arithmetics [12].

Laser-speckle-related simulations require high spatial
resolutions in the order of the wavelength used (e.g.,
550 nm for green light), which results in relatively large
matrix sizes when using realistic dimensions for the setup.
Sequential computations on a CPU proved unfeasible due
to the long time needed to solve even simple problems;
for instance, we estimated that solving the wave propaga-
tion from a 2000 x 2000 points source aperture to a
512 x 512 points destination field would take a week.
However, the free software toolbox “GPUmat'” for Matlab?
provides a convenient way to access the general-purpose
computational capabilities of the graphics processing units
of Nvidia CUDA™ enabled graphics cards. Depending on
the size of the problem, it speeds up calculation by at least
a factor of 20-50. The GPU-accelerated® solver finished
above example problem in approximately 6 h 36 times fas-
ter than the same algorithm running on its Intel® Core™2
Q9550 @ 2.83 GHz host CPU.

This paper extends an IMEKO TC2 conference article
[13], and presents the physical models and principles
which were used to simulate the wave propagation of
monochromatic light, the validation of the simulation re-
sults, and a short conclusion.

2. Rough surfaces

In this section, a short introduction to the theory of
rough wetting is followed by an algorithm for defining an
artificial surface.

2.1. Rough wetting

Complete wetting with zero contact angle describes a
thin layer of liquid completely covering a solid surface
[14,15], as shown in Fig. 1. The solid surface {s(p) is spec-
ified for each vector p ={¢&,1} in a two-dimensional refer-
ence plane [5]. Andelman et al. determined the liquid/
vapor interface {;(p) above the solid surface by minimizing

! http://sourceforge.net/projects/gpumat;/.
2 http://www.mathworks.com/.
3 A Zotac NVIDIA GeForce 580 AMP! graphics card was used.
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Fig. 1. A liquid film between vapor and a rough solid surface. The solid/
liquid and liquid/vapor interfaces are at heights {s(p) and {;(p) above the
{&,n,0} reference plane [5], respectively.

the free energy F, which consists of solid/vapor, solid/li-
quid, and liquid/vapor surface tensions, molecular interac-
tions between the solid and the liquid surfaces, and the
chemical potential of the film. Linearization of the result-
ing integro-differential equation yields

G(@) = GK@/(1+a ), (1)

where q is a frequency in periods/meter, ZL(q), Zs(q), and
I~<(q) are the Fourier transforms of the liquid/vapor inter-
face, the solid/liquid interface, and a convolution kernel
K(p), containing energy-related terms, and y is the surface
tension-dependent healing length. Eq. (1) acts as a low-pass
filter on (5(q), which means that great differences in the
undulation of the metal surface are damped and the liquid
surface becomes smoother with increasing film thickness.

2.2. An artificial surface

Next, a surface (sr(p) must be generated for the pro-
posed simulation model. It is defined in a two step process
where first an artificial Fourier transform Zso(q) of the sur-
face determines most of its spectral properties, and subse-
quent scaling in the spatial domain guarantees a specified
surface roughness. The spectrum for all frequencies q is gi-
ven by

lso(q)] = a(q), 2)
Z(Cso(q)) ~U(-T, ), 3)
lso(q) = o(—q), (4)

where a(q) : R — R in Eq. (2) may be an arbitrary func-
tional which acts only on the magnitude of Zs_m(q) (e.g.,
the kernel of a low-pass filter) to approximate the fre-
quency content of a real surface. The complex phase of
each component of the spectrum is distributed randomly
on the unit circle via relation (3). The uniform distribution
U(—m, m) on the interval [, ) ensures that a random sur-
face is generated. Finally, the symmetry condition in Eq. (4)
guarantees (s (p) € R.

In the simplest case, the functional a(q) is the kernel of
a rotationally symmetric Gaussian low-pass filter [16]

a(q) = exp(—|q|/(26%)),

where ¢ is the standard deviation of the Gaussian curve. In
a more sophisticated approach, the functional depends on
the direction of the vector q = {q1,q>} in order to simulate
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