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a b s t r a c t

For measurement outside the laboratory, uncertainty evaluations have to be model-based.
Therefore models should not only represent the measurand but also its environment. For
measurement in social science these models will be too complex, therefore instead of
white-box models, grey-box (modular-designed) models are preferred. They are much sim-
pler. Uncertainty evaluations of measurements outside the laboratory are more of the kind
of Type B evaluations. In social science, due to the lack of authoritative scientific institu-
tions, Type B evaluations will be of a different character. In case of measurements based
on grey-box models they are the so-called structure-oriented behaviour tests.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction: Builder of Metrological Bridges

The gap between the abstract philosopher’s approach
and that of the pragmatic instrument designer is gradu-
ally bridged (Finkelstein [1]).

Ludwik Finkelstein had a life-long interest in the episte-
mological and logical foundations of measurement. As far
as I know, his very first article on this issue, ‘Principles of
Measurement’, published in 1963, presented ‘‘a survey of
some of the philosophy of measurement from the point
of view of instrument and control engineering’’ [2, p.
181]. This article has some remarkable elements which
characterizes Finkelstein as a scholar and so also his later
contributions on the foundations of measurement.

Firstly, Finkelstein wished ‘‘the field to which modern
methods of instrumentation, computation and control are
applied’’ to be ‘‘widened to encompass biology, psychology
and economics as well as physical measurements of a less
conventional type’’ [2, p. 181]. Secondly, he very soon saw
that the classical view of measurement based on measure-
ments in physics had proven to be ‘‘unduly limited when

dealing with scientific investigation outside that field’’ [2,
p. 182]. Therefore the classical theory of measurement
had to be extended. An important first step in that direc-
tion was, according to Finkelstein, taken by the works of
the psychologist Stanley Smith Stevens in the late 1940s.

Stevens’ work led to the Representational Theory of
Measurement (RTM), which Finkelstein introduced to
instrument and control engineering in his 1975 article
‘Fundamental concepts of measurement: definition and
scales’ [3]. It is interesting to see that on one hand Finkel-
stein already in an early stage of the development of RTM
saw its value for instrument and control engineering, but
on the other hand also saw its limitations. RTM does not
account for errors and uncertainty in measurement. There-
fore, Finkelstein suggested, RTM has to be extended to
encompass the issues of errors and uncertainty, issues that
became later the focus of the Guide to the Expression of
Uncertainty Measurement (GUM) [4].

This article is dedicated to Finkelstein’s aspirations to
bridge philosophy and measurement science. In line of
these aspirations, it aims to extent RTM to encompass
measurements outside the laboratory. The term ‘labora-
tory’ is used here to indicate that for measurement pur-
poses control of background conditions and intervention
of the measurand are possible. Therefore, the term ‘outside
the laboratory’ is used to capture measurements for which
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there are no possibilities of control and intervention, in
other words, when measurements are based on ‘passive
observations’.1 An important and large field of measure-
ment outside the laboratory is econometrics. The ideas dis-
cussed in this article are arrived at by studying this field.

To extent RTM to encompass measurements outside the
laboratory, this article takes the same starting point as Fin-
kelstein took in his later work: the representations to
which RTM refers are mathematical models, therefore
RTM is sometimes called the Model Theory of Measure-
ment. RTM emphasizes the central role mathematical
models have in measurement. For measurements outside
the laboratory, measurement results are the outcomes of
models representing the measurand. The extension of
RTM to fields where no control and interventions on the
measurand are possible means, however, that not only
the measurand should be modelled but also its environ-
ment [5]. Modelling environments, that is background con-
ditions, implies accounting for errors and uncertainties. It
will be shown that this has implications for the GUM ap-
proach [4], which is mainly focused on laboratory
measurements.

2. Expressions of uncertainty

GUM [4] distinguishes between two types of evalua-
tions of uncertainties. Type A evaluation is an evaluation
of a component of measurement uncertainty by a statisti-
cal analysis of measurement results obtained under de-
fined measurement conditions. Type B evaluation is an
evaluation of measurement uncertainty determined by
means other than a Type A evaluation of measurement
uncertainty. These defined measurement conditions range
from repeatability to reproducibility:

1. Repeatability: same measurement procedures, same
operators, same measuring system, same operating
conditions and same location, and replicate measure-
ments on the same or similar objects over a short period
of time.

2. Intermediate precision: same measurement procedure,
same location, and replicate measurements on the same
or similar objects over an extended period of time, but
may include other conditions involving changes.

3. Reproducibility: different locations, operators, measur-
ing systems, and replicate measurements on the same
or similar objects.

Going from conditions of repeatability (1) to conditions
of reproducibility (3) can be seen as going from laboratory
conditions to conditions applicable outside the laboratory.
A shift from inside-laboratory conditions to outside-labo-
ratory conditions implies a shift from Type A evaluations
to Type B evaluations. These latter evaluations are based
on information:

� Associated with authoritative published quantity
values.
� Associated with the quantity value of a certified refer-

ence material.
� Obtained from a calibration certificate.
� About drift.
� Obtained from the accuracy class of a verified measur-

ing instrument.
� Obtained from limits deduced through personal

experience.

The problem with this last list is that when one would
like to use it for a social science as economics, one would
soon discover that these authoritative sources of informa-
tion do not exist, or at least do not have the same level of
authority: There is no central authority for published
quantity values, but instead various institutions competing
for authority. There are no certifications for reference
materials and calibration in social science, because that
would presume a central authority providing them.

Does a shift from measurements inside a laboratory to
measurements outside a laboratory, and the resulting shift
from Type A evaluations to Type B evaluations, therefore
imply an increase of subjectivity, e.g. increasing role of
evaluations based on personal experience? Not necessarily,
the use of models for measurement and the evaluation of
its uncertainties can also increase objectivity. It only
means that we have to reconsider what else could be im-
plied by ‘scientific judgment’.

Knowledge about an input quantity Xi is inferred from
repeated indication values (Type A evaluation of uncer-
tainty) [. . .], or scientific judgement or other informa-
tion concerning the possible values of the quantity
(Type B evaluation of uncertainty) [6, p. 5].

This paper suggests that a scientific judgment should be
model-based, particularly in case of measurements outside
the laboratory.

3. The problem of passive observations

To discuss this problem of scientific judgement for out-
side-laboratory measurement in social science, consider
the following problem. In most cases, a measurand Y is
not measured directly, but is inferred from N other quanti-
ties X1, X2, . . ., XN through a functional equation [4, p. 8]:

Y ¼ f ðX1;X2; . . . ;XNÞ ð1Þ

These quantities Xi can only provide information about
Y if they influence the magnitude of Y. Therefore Eq. (1) is
rewritten in such a way to express the relation between
these quantities Xi and the measurand Y in terms of
influences:

DY ¼ @f=@X1 � DX1 þ . . .þ @f=@XN � DXN ð2Þ

The derivatives, @f/@Xi, often called sensitivity coeffi-
cients, describe how the output estimate Y varies with
changes in the values of the input estimates X1, X2, . . ., XN

[4, p. 19].
1 ‘Passive observations’ are data obtained without control and interven-

tion. They can be both of a qualitative as quantitative nature.
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