
Combining aspects and object-orientation in model-driven engineering
for distributed industrial mechatronics systems

Marco Aurélio Wehrmeister a,⇑, Edison Pignaton de Freitas b, Alécio Pedro Delazari Binotto c,
Carlos Eduardo Pereira d

a Federal University of Technology – Paraná (UTFPR), Av. Sete de Setembro 3165, 80230-901 Curitiba, Brazil
b Federal University of Santa Maria (UFSM), CESNORS, 98400-000 Frederico Westphalen, Brazil
c IBM Research – Brazil, Rua Tutóia 1157, 04007-900 São Paulo, Brazil
d Electrical Engineering Department (DELET), Federal University of Rio Grande do Sul (UFRGS), Av. Osvaldo Aranha 103, 90035-190 Porto Alegre, Brazil

a r t i c l e i n f o

Article history:
Received 30 December 2012
Revised 21 December 2013
Accepted 23 December 2013
Available online xxxx

Keywords:
Model-Driven Engineering (MDE)
Aspect Oriented Software Development
(AOSD)
Embedded and real-time system
Industrial mechatronics system
Design automation
Code generation

a b s t r a c t

Recent advances in technology enable the creation of complex industrial systems comprising mechanical,
electrical, and logical – software – components. It is clear that new project techniques are demanded to
support the design of such systems. At design phase, it is extremely important to raise abstraction level in
earlier stages of product development in order to deal with such a complexity in an efficient way. This
paper discusses Model Driven Engineering (MDE) applied to design industrial mechatronics systems.
An aspect-oriented MDE approach is presented by means of a real-world case study, comprising require-
ments engineering up to code generation. An assessment of two well-known high-level paradigms,
namely Aspect- and Object-Oriented paradigms, is deeply presented. Their concepts are applied at every
design step of an embedded and real-time mechatronics system, specifically for controlling a product
assembler industrial cell. The handling of functional and non-functional requirements (at modeling level)
using aspects and objects is further emphasized. Both designs are compared using a set of software engi-
neering metrics, which were adapted to be applied at modeling level. Particularly, the achieved results
show the suitability of each paradigm for the system specification in terms of reusability quality of model
elements. Focused on the generated code for each case study, statistics depicted an improvement in num-
ber of lines using aspects.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Modern automation and control systems include electro-
mechanical devices controlled by complex embedded and real-
time systems, comprising hardware and software components.
These systems enable the creation of ‘‘smart’’ or ‘‘intelligent’’ auto-
mation devices which are able to execute autonomously and sup-
port fully decentralized decision making. This dramatically
changes the architectures (usually centered on Programmable Lo-
gic Controllers – PLC) adopted in industrial automation.

The increasing number of functionalities incorporated into
these modern embedded and real-time systems may require not
only specialized hardware and software components, but also their
deployment over different processing units, being possibly
physically separated. Real-time constraints affect both processing
and communication. Handling such requirements cannot violate

other system constraints and/or requirements. Therefore, engi-
neers must deal not only with the design of software and hardware
in the same project, but also with their interaction which is gener-
ally implemented via industrial communication protocols [37,14].
In this sense, it is important to minimize (or even avoid) inconsis-
tencies in system specification, i.e., software and hardware teams
must follow the same consistent system specification basis.

Furthermore, the non-functional nature of some important
requirements of embedded systems can lead to several problems,
such as scattered and tangled handling. If they are not properly
handled, these problems increase the overall design complexity,
affecting effort and project timeline. In this case, reuse of previ-
ously developed artifacts (e.g., software and/or hardware blocks)
becomes harder. Additionally, software and hardware components
are usually designed concurrently and using distinct languages,
tools, and concepts, considerably increasing design complexity.

Several works propose the raising of abstraction level and sep-
aration of concerns in order to manage the growing complexity.
Some works propose the use of high-level concepts from Object-
Oriented (OO) paradigm [50,6]. However, to specify the handling

0957-4158/$ - see front matter � 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mechatronics.2013.12.008

⇑ Corresponding author. Tel.: +55 4133104745.
E-mail addresses: wehrmeister@utfpr.edu.br (M.A. Wehrmeister), edison.p.freitas@

ufsm.br (E.P. de Freitas), abinotto@br.ibm.com (A.P.D. Binotto), cpereira@ ece.ufrgs.br
(C.E. Pereira).

Mechatronics xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier .com/ locate/mechatronics

Please cite this article in press as: Wehrmeister MA et al. Combining aspects and object-orientation in model-driven engineering for distributed industrial
mechatronics systems. Mechatronics (2014), http://dx.doi.org/10.1016/j.mechatronics.2013.12.008

http://dx.doi.org/10.1016/j.mechatronics.2013.12.008
mailto:wehrmeister@utfpr.edu.br
mailto:edison.p.freitas@ufsm.br
mailto:edison.p.freitas@ufsm.br
mailto:abinotto@br.ibm.com
mailto:cpereira@ece.ufrgs.br
http://dx.doi.org/10.1016/j.mechatronics.2013.12.008
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics
http://dx.doi.org/10.1016/j.mechatronics.2013.12.008


of non-functional requirements using only the concepts available
in OO paradigm is not adequate. OO paradigm lacks convenient
abstractions to represent and encapsulate non-functional require-
ments handling. More precisely, non-functional requirements han-
dling is scattered and intermixed within many objects responsible
for handling functional requirements. To overcome such problems
at implementation level, subject-oriented programming [35] and
Aspect-Oriented programming [28] have been proposed. Both
works promote a partitioning of crosscutting concerns in units
of modularization called subjects and aspects, respectively.

Model-Based Engineering [38,21] and/or Model-Driven Engineer-
ing (MDE) [43,1] are approaches intended to raise abstraction level
by using models as the main artifacts created during design. The
main idea is to create a Platform Independent Model (PIM) which
is refined via model transformations into a Platform Specific Model
(PSM). MDE can be seen as a trend in designing embedded systems
for automation applications and several approaches have been pro-
posed in the last years, like [48,23,21,1,2].

It is important to highlight that the use of models during design
is not a completely new proposal. Other engineering disciplines
have been using models for decades. However, particularly for sys-
tems comprising hardware and software (which is the case for
embedded systems), models can play a more active and important
role than only project documentation. Models shall be used to
(automatically) generate system implementation through model
transformations, keeping specification and implementation
synchronized. In addition, model transformations enable correct-
by-construction implementations, provided that models and trans-
formations are formally and semantically proved. Meanwhile,
intermixing the handling of requirements from different natures
at modeling level is still a challenge task.

Within this context, this paper discusses the use of MDE and
separation of concerns for handling functional and non-functional
requirements. This article presents in details an innovative
approach called AMoDE-RT – Aspect-oriented Model Driven
Engineering for Real-Time systems, which combines Unified
Modeling Language (UML)1 with concepts of Aspect-Oriented Software
Development (AOSD) [22]. AMoDE-RT conceptualizes the separation
of concerns with the handling of functional and non-functional
requirements from earlier design stages (e.g., requirements engi-
neering and modeling phases) to final implementation.

Practically, AMoDE-RT is presented throughout this text by
means of a case study representing a real-world industrial mecha-
tronics system, namely the control system for a product assembler
industrial cell. Therefore, this paper contributes to the following
goals: (i) apply AOSD concepts together with UML at modeling le-
vel; (ii) demonstrate the use of UML to model a concrete embedded
and real-time system for controlling an industrial mechatronics
system; (iii) assess both OO and AOSD in terms of UML models
through software engineering metrics, comparing their strengths
and weaknesses; and (iv) promote a discussion on the use of AOSD
within design of embedded and real-time systems applied to
mechatronics systems.

AMoDE-RT increases the reuse of artifacts produced during de-
sign, as it allows for a better separation of concerns in require-
ments handling. For that, the Distributed Embedded Real-time
Aspects Framework (DERAF) has been developed to be used during
the whole design process, from initial phases until system imple-
mentation. This framework provides a predefined set of aspects
which deals with non-functional requirements commonly found
in automation systems (see Section 5). Although there are cross-
cutting concerns related to functional requirements, this work con-
centrates on those associated with non-functional requirements.

The presented results demonstrate indicators on the effectiveness
of AMoDE-RT to design embedded and real-time systems for
industrial automation applications.

This article is organized as follows: Section 2 discusses related
work, followed by Section 3 that provides an overview of
AMoDE-RT design flow. Section 4 introduces the case study used
throughout this text. The requirements engineering process pro-
posed in AMoDE-RT is described in Section 5. The specification of
functional requirements using UML is discussed in Section 6 while
non-functional requirements specification is approached in Sec-
tion 7. Section 8 presents the tools created to support the
AMoDE-RT approach. An assessment of AMoDE-RT and results ob-
tained for the case study are presented in Section 9, which includes
a discussion on reusability of design artifacts and also on applying
MDE in industry. Finally, conclusions and future work directions
are discussed in Section 10.

2. Related work

This section briefly discusses some relevant related work on
applying MDE in the domain of automation and embedded sys-
tems. An interesting survey on using UML in mechatronics systems
design is presented in [50]. The author identifies an increasing
number of researchers proposing the use of UML as a specification
language to complement traditional approaches, such as those
using MATLAB, Simulink, and Statecharts.

Traceability is an important feature in MDE to enhance auto-
mated analysis, consistency, and coherence of models used during
software development. The work of [36] contributed with a man-
agement approach for the complexity of traceability information
in MDE by means of identifying trace-links in a MDE process and
of defining semantically rich trace-links between models. Identify-
ing rich trace-links is crucial to maintain traceability during soft-
ware development.

Targeting software product line engineering, [17] shows impor-
tant issues to include an aspect-oriented MDE tool-chain in the
software development production line process. The Aspect-oriented
Model-driven Product Line Engineering (AMPLE) project2 proposed
an aspect-oriented MDE methodology for Software Product Line
(SPL), aiming to improve modularization of software variations and
maintenance of their traceability during SPL evolution. The lifecycle
proposed in AMPLE comprises early activities as requirements engi-
neering, as well as architecture definition and implementation activ-
ities of a software based on SPL. In this sense, AMoDE-RT is similar in
the way it uses AOSD and MDE techniques and covers a similar range
of activities. However, AMoDE-RT focuses not only on software but also
on hardware components of an embedded system. This is achieved by
using a Platform-based Design approach, which comprises platforms
that provide hardware and software components, and also model
transformations and code generation. Nonetheless, AMoDE-RT is
more restricted when using AOSD, since it applies aspects to deal
with non-functional crosscutting concerns, whereas AMPLE deals
with both functional and non-functional ones.

The work presented in [20] applies Theme/UML, an aspect-ori-
ented MDE approach to separate embedded system concerns from
earlier design phases to system implementation, reducing design
complexity. That work illustrated the Theme/UML approach using
a design of a pacemaker as case study, from modeling down to
code. According to the authors, Theme/UML has some limitations:
(i) it addresses only non-functional concerns that manifest them-
selves as code in the system; (ii) inheritance is not supported in
UML-to-C transformation; and (iii) the behavior specified within
aspects can be specified only with sequence diagram, leading to

1 Version 2.4.1, http://www.omg.org/spec/UML/2.4.1/. 2 http://www.ample-project.net/.

2 M.A. Wehrmeister et al. / Mechatronics xxx (2014) xxx–xxx

Please cite this article in press as: Wehrmeister MA et al. Combining aspects and object-orientation in model-driven engineering for distributed industrial
mechatronics systems. Mechatronics (2014), http://dx.doi.org/10.1016/j.mechatronics.2013.12.008

http://dx.doi.org/10.1016/j.mechatronics.2013.12.008


Download English Version:

https://daneshyari.com/en/article/10407825

Download Persian Version:

https://daneshyari.com/article/10407825

Daneshyari.com

https://daneshyari.com/en/article/10407825
https://daneshyari.com/article/10407825
https://daneshyari.com

