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a b s t r a c t

The paper demonstrates a phase estimation method in fringe analysis. The proposed method relies on
local polynomial phase approximation and subsequent state-space formulation. The polynomial
approximation of phase transforms phase extraction into a parameter estimation problem, and the
state-space modeling allows the application of Kalman filter to estimate these parameters. The
performance of the proposed method is demonstrated using simulation and experimental results.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

For the application of interferometric techniques in optical
metrology, fringe analysis [1] plays a crucial role. The major aim in
fringe analysis is the reliable extraction of phase, since the informa-
tion about the measured physical quantity is usually encoded in the
phase of a fringe pattern. One of the prominent techniques for phase
estimation is the phase-shifting approach [2,3], where multiple
interferograms or frames with successive phase incrementation are
captured. However, the requirement of multiple frames is an
important limitation of this approach, and could render the practical
implementation difficult. Accordingly, for phase estimation using a
single frame, several spatial fringe analysis methods based on the
Fourier transform [4], wavelet transform [5,6], dilating Gabor trans-
form [7], recurrence algorithm [8,9], regularized phase tracking [10],
windowed Fourier transform [11], Hilbert transform [12,13], high-
order ambiguity function [14], subspace method [15], phase differen-
cing operator [16], etc., have been proposed.

In this paper, we propose an elegant spatial fringe analysis
method for phase estimation. The method is presented in the
context of digital holographic interferometry (DHI), which is a
prominent optical technique for analyzing the deformation of a
diffuse object. The theory of the proposed method is outlined in
the next section. Simulation and experimental results are
presented in Section 3. Finally, conclusions are presented in
Section 4, followed by acknowledgments.

2. Theory

In DHI, two holograms are digitally recorded, corresponding to
object states before and after deformation. The complex ampli-
tudes for the object wave-fields are obtained using numerical
reconstruction through discrete Fresnel transform [17]. Subse-
quently, the interference field is obtained by multiplying the
post-deformation complex amplitude with the conjugate of the
pre-deformation complex amplitude. The interference field in DHI
can be expressed as

Γðx,yÞ ¼ aðx,yÞ exp½jϕðx,yÞ�þηðx,yÞ ð1Þ
where aðx,yÞ is the amplitude, ϕðx,yÞ is the phase and ηðx,yÞ is the
additive white Gaussian noise. For a given column x, we have

ΓðyÞ ¼ aðyÞ exp½jϕðyÞ�þηðyÞ ð2Þ
In the proposed method, phase is modeled as a local polynomial.
In other words, ΓðyÞ is divided into say Nw segments, and in each
segment, the phase is approximated as a polynomial of degree M.
Hence, for a segment i, we have

ΓiðyÞ ¼ aiðyÞ exp½jϕiðyÞ�þηiðyÞ ∀y∈½1,Ns� ð3Þ

ϕiðyÞ ¼ ∑
M

m ¼ 0
αmym ð4Þ

where Ns is the size of the segment. From above equation, it is
clear that the parameters required to retrieve phase are the
polynomial coefficients ðα0,…,αMÞ.

To estimate these coefficients, a state-space model [18] is applied.
Accordingly, using a Taylor series expansion of order M, we have

ϕiðyþ1Þ ¼ ϕiðyÞþ
1
1!

ϕð1Þ
i ðyÞþ⋯þ 1

M!
ϕðMÞ
i ðyÞ
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¼ ∑
M

p ¼ 0

1
p!
ϕðpÞ
i ðyÞ ð5Þ

where the superscript ‘(p)’ denotes the derivative of order p. From
above equation, we have

ϕðrÞ
i ðyþ1Þ ¼ ∑

M

p ¼ r

1
ðp−rÞ!ϕ

ðpÞ
i ðyÞ ð6Þ

Subsequently, the state vector is chosen as

xðyÞ ¼ ½aiðyÞ ϕiðyÞ ϕð1Þ
i ðyÞ ⋯ ϕðMÞ

i ðyÞ�T ð7Þ
where ‘T’ indicates the vector transpose. Clearly, xðyÞ is a ðMþ2Þ � 1
vector with elements fx1,x2,…,xMþ2g ¼ faiðyÞ,ϕiðyÞ,…,ϕðMÞ

i ðyÞg. The
polynomial coefficients are related to the state vector as

x2
x3
x4
⋮

xMþ2

2
6666664

3
7777775
¼UðyÞ

α0
α1
α2

⋮
αM

2
6666664

3
7777775

ð8Þ

or equivalently

x2
x3
x4
⋮

xMþ2

2
6666664

3
7777775
¼

1 y y2 ⋯ yM

0 1 2y ⋯ MyM−1

0 0 2 ⋯ MðM−1ÞyM−2

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ M!

2
6666664

3
7777775

α0

α1
α2
⋮
αM

2
6666664

3
7777775

ð9Þ

From above equations, it is clear that the matrix UðyÞ shows how the
phase and its derivatives up to order M are connected to the
coefficients.

The state-space analysis is characterized by two sets of equa-
tions: (1) state transition equation, which describes the evolution of
the state vector for successive states and (2) observation equation,
which exhibits the relationship between the state vector and
measurement. Using Eqs. (5) and (6), the state transition equation
can be expressed as

xðyþ1Þ ¼ FxðyÞ ð10Þ
where

F¼

1 0 0 ⋯ 0
0 1 1=1! ⋯ 1=M!

0 0 1 ⋯ 1=ðM−1Þ!
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

2
6666664

3
7777775

ð11Þ

For the observation equation, the measured quantity is the
complex signal ΓiðyÞ. Accordingly, using Eq. (3), the observation
equation is given as

zðyÞ ¼ hðxðyÞÞþwðyÞ ð12Þ
where

zðyÞ ¼
RefΓiðyÞg
ImfΓiðyÞg

" #
ð13Þ

hðxðyÞÞ ¼
aiðyÞ cos ðϕiðyÞÞ
aiðyÞ sin ðϕiðyÞÞ

" #

¼
x1 cos ðx2Þ
x1 sin ðx2Þ

" #
ð14Þ

wðyÞ ¼
RefηiðyÞg
ImfηiðyÞg

" #
ð15Þ

with ‘Re’ and ‘Im’ denoting the real and imaginary parts.

Given the state transition and observation equations as in Eqs.
(10) and (12), the Kalman filter [19] is used for state estimation.
Accordingly, the estimates of the state vector xðyÞ and the
corresponding error covariance matrices, before and after
considering the measurement zðyÞ are denoted as

x̂−ðyÞ ¼ a priori estimate ð16Þ

P̂
−ðyÞ ¼ E½ðx−x̂−Þðx−x̂−ÞT � ð17Þ

x̂ þ ðyÞ ¼ a posteriori estimate ð18Þ

P̂
þ ðyÞ ¼ E½ðx−x̂ þ Þðx−x̂ þ ÞT � ð19Þ

with ‘E’ indicating the expectation operation. Since the observa-
tion equation is nonlinear, the extended Kalman filter (EKF)
algorithm [20] is applied, as shown below:

1. The nonlinear function hðxðyÞÞ in Eq. (14) is linearized around
the a priori state estimate using a first order Taylor series

hðxÞ ¼ hðx̂−Þþ Jhðx̂−Þðx−x̂−Þ ð20Þ
where Jh is the Jacobian matrix given as

Jhðx̂−Þ ¼ ∂h
∂x

���
x ¼ x̂−

¼
cosðx̂−2 Þ −x̂−1 sinðx̂−2 Þ 0 ⋯ 0
sinðx̂−2 Þ x̂−1 cosðx̂−2 Þ 0 ⋯ 0

" #
ð21Þ

2. The Kalman gain KðyÞ is computed as

K¼ P̂
−
JThðJhP̂

−
JThþRÞ−1 ð22Þ

with R being the noise covariance.
3. The a posteriori estimates are obtained as

x̂ þ ðyÞ ¼ x̂−ðyÞþKðyÞ½zðyÞ−hðx̂−ðyÞÞ� ð23Þ

P̂
þ ðyÞ ¼ P̂

−ðyÞ−KðyÞJhðyÞP̂
−ðyÞ ð24Þ

4. The a priori estimates for the next state are predicted as

x̂−ðyþ1Þ ¼ Fx̂ þ ðyÞ ð25Þ

P−ðyþ1Þ ¼ FPþ ðyÞFT ð26Þ

5. Repeat the above steps with the predicted estimates for the
next state.

The recursive operation, as described above, is performed for each
y∈½1,Ns�. For every run, the Kalman filter computes the state
estimate using the prior value and measurement. To initialize
the Kalman filter, we used x̂−ð1Þ ¼ ½jΓið1ÞjanglefΓið1Þg 0 . . . 0�T and
P̂
−ð1Þ ¼ diagð1,1,…,1,1Þ as the prior estimates.
With the state estimate at y¼Ns, i.e. x̂ þ ðNsÞ known, the

polynomial coefficients are estimated from Eq. (8) as

α0

α1
α2
⋮
αM

2
6666664

3
7777775
¼U−1ðNsÞ

x̂þ
2

x̂þ
3

x̂þ
4

⋮
x̂þ
Mþ2

2
66666664

3
77777775

ð27Þ

Finally, the phase ϕiðyÞ within the segment i is constructed from
the estimated coefficients using Eq. (4). It needs to be emphasized
that an unwrapped estimate of phase is directly obtained within
the segment. The above procedure is repeated for all segments
within a column, and subsequently for all columns to obtain the
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