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L.M. Arévalo Aguilar
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a b s t r a c t

A simple non-iterative algorithm for generalized phase-shifting interferometry is proposed. This

algorithm recovers the wrapped phase from two or more interferograms with unknown phase steps

between 0 and p rad. The proposal is based on the least squares method to calculate four parameters:

background and modulation light, phase steps and wrapped phase distribution. This algorithm, by a

new interferogram normalization procedure, can handle interferograms with variable spatiotemporal

visibility overcoming the restriction and drawbacks from usual variable spatial visibility approaches.

The algorithm works very well for processing interferograms which include many fringes. This

behaviour will be explicated and discussed. The effectiveness and robustness of this algorithm are

supported by numerical simulation and by the evaluation of experimental interferograms. The phase-

shift estimation quality is verified by two different techniques. By the properties of this algorithm, such

as the low computing time and free of user intervention, we believe it could be used in automatic real-

time applications.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Optical interferometry is one of the most powerful tools used
in optical testing [1]. In general, by using this tools we obtain
fringe-patterns (interferograms) that have a phase distribution
which contains the desired information such as the wavefront
deformations. There are several methods for extracting the phase
distribution from interferograms which can be divided into two
broad categories: spatial methods and temporal (phase-shifting
interferometry (PSI)) methods [2,3].

Spatial methods require that interferograms correspond to
wavefronts with a carrier, i.e. tilted phase distribution such that
the wavefront is monotonically increasing [4]. Such interfero-
grams are characterized by having only open fringes. Then
interferograms with closed fringes are ruled out of conventional
spatial methods. In contrast, PSI methods work with any type of
interferograms including open and closed fringes in any combina-
tion. In this case, a set of interferograms is required where the
recorded phase between two interferograms change only by a
constant phase step.

The standard PSI requires that all phase steps are equal [5–7].
However, this requirement is often difficult to fulfil due to many

practical issues with miscalibration, non-linear response of piezo-
electric device, and another perturbations [8]. To eliminate this
inconvenience, the standard PSI has been extended by alternative
approaches such as generalized data reduction and least squares
algorithm [9,10]. However, in these cases the phase-shift must
still be known a priori, although they do not require any special
value. To overcome these drawbacks, the so called Generalized PSI
(GPSI) in which the phase-shift is a to be determined unknown
was proposed.

Perhaps, Lai and Yatagai [11] were the first to suggest a spatial
method for phase-shift determination by using an additional
optical setup to generate auxiliary Fizeau fringes. The additional
optical setup was eliminated by including in the phase-shifted
interferograms a carrier [12] or multiple carriers [13]. The carrier
requirement has been relieved using different methods as the
ellipse fitting method [14] from two or more interferograms with
uniform visibility. With at least three interferograms, less severe
restriction to the visibility can be reached by alternative
approaches such as the two-dimensional Fourier–Hilbert demo-
dulation [2], the direct global search stochastic algorithm [15,3],
the cross-power spectrum and cross-bispectrum [16,17], and the
hybrid formed by both principal component analysis and least
squares method [18].

When at least five interferograms are available, the Lissajou
ellipse fitting [19], or with at least 15, the max–min algorithm and
the phase difference histogram [20–22] are useful. If as few as
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three or less interferograms are available but the computing time
is not of concern, the iterative algorithms [23–25], the Fourier
transform method [26], the windowed Fourier transform (WFT)
[27], and the hybrid formed with the iterative and WFT
approaches [28] are appropriate. Regardless of the computational
cost, the WFT has found other applications such as the phase-
shifter calibration [29], and the phase extraction from either
phase-shifted interferograms, a single-carrier interferogram, or
even a single closed-fringe pattern [30,31]. Also, for applications
where the statistical nature of diffraction field is adequate, this
can be exploited to phase-retrieval [32–34]; in this situation only
two or more interferograms are required.

In this paper we present a simple faster non-iterative algo-
rithm for GPSI that uses the least squares method to estimate four
parameters: the background light, the modulation light, the phase
steps, and the wrapped phase distribution. The former two
parameters are necessary in order to normalize the interfero-
grams. The interferogram normalization allows that the proposed
algorithm can handle interferograms with visibility variable both
spatially and temporally. This algorithm is totally automatic
because it does not require user intervention, robust because it
does not need noise filters, inexpensive computationally due to
both the fact that it can work with only two or more interfero-
grams and is non-iterative, and can extract any unknown
phase step greater than zero and less or equal than p rad.
These properties allow that the algorithm that we propose could
be used in automatic real-time applications. Moreover, this algo-
rithm has no restriction over the illumination profile because it
can be represented by a high-order polynomial or by any appro-
priate surface as splines. In particular, in this work a second-
degree polynomial (parabolic profile or second-order approxima-
tion of Gaussian profile) is used with the aim of making the
algorithm’s description simple and intuitive. The background and
modulation light estimation is better when the interferograms
have many fringes. This will be explicated and discussed later.

We will explain the algorithm’s principles and then show its
verification by computer simulation. We also carry out an optical
experiment to test the suggested algorithm by processing real
interferograms. The phase-shift estimation quality of the pro-
posed algorithm is verified with the well-known ellipse fitting
[14] and Fourier transform [26] methods.

2. Description of the algorithm

The algorithm that we are proposing has two parts. In the first
one we normalize the interferograms by a new method where the
background and modulation light parameters are estimated using
the least squares method. In the second one, with the normalized
interferograms, we calculate the phase steps to obtain the phase-
shift and finally recovering the wrapped phase distribution.

2.1. Interferogram normalization

The interferogram normalization is the background and
modulation light suppression. For this purpose, frequency analy-
sis techniques have been successfully applied [35–39]; however,
the efficiency is sensitive to filter design and can be computa-
tionally expensive. In this work we introduce a new interferogram
normalization process based on polynomial surfaces fitting.
This method exploits the information over the illumination
profile, obtaining a faster and robust algorithm.

The normalization process implemented in this algorithm is
based on two assumptions: first, the interferograms have a back-
ground illumination approximated to a parabolic profile, and
second, the interferograms are formed by many fringes (open

and closed fringes in any combination). The first assumption is a
consequence of representing the general Gaussian illumination by
using just a second-degree polynomial (a second order approx-
imation). This is not a restriction because we can use a higher
degree polynomial or another appropriate analytic bidimensional
surface; however, here we are considering a second-degree
polynomial in order to make a simple and intuitive description
of the normalization procedure. The second assumption is needed
so the cosine terms bðp; kÞ cos½fðpÞþdk� and b2

ðp; kÞ cos½2fðpÞþ
2dk�=2 from Eqs. (1) and (6), respectively, could be signals with
zero mean; thus, an approximate solution for aðp; kÞ and bðp; kÞ
can be estimated by a polynomial fitting procedure.

We consider a set of KZ2 interferograms. The k-th interfer-
ogram, with k¼ 0,1, . . . ,K�1, can be defined as

IkðpÞ ¼ aðp; kÞþbðp; kÞ cos½fðpÞþdk�, ð1Þ

where p¼ ðx,yÞ is a position vector with coordinates x and y in a
rectangular domain given by ½x1,xM� � ½y1,yN � and M�N is the
common size of all interferograms. The parameters a and b,
functions of p and perhaps of k, defined as

aðp; kÞ ¼ Ioðp; kÞþ Irðp; kÞ,

bðp; kÞ ¼ 2½IoðpÞIrðpÞ�
1=2

represents the background and modulation light, respectively.
Ioðp; kÞ is the object irradiance and Irðp; kÞ is the reference
irradiance, fðpÞ is the phase distribution to be measured, and
the phase-shift dk is defined as

dk :¼

0 for k¼ 0,Xk

‘ ¼ 1

a‘ for k40,

8>><
>>: ð2Þ

where a‘ is the phase step from interferogram I‘�1ðpÞ to I‘ðpÞ with
‘¼ 1,2, . . . ,N�1. These phase steps a‘ can be solved for the
interval ½0,p� rad; however, we assume that 0oa‘rp in order
to avoid singularity in Eq. (16). From Eq. (1), we can see that the
functions aðp; kÞ, bðp; kÞ, dk, and fðpÞ are the parameters of our
model. The main parameter is fðpÞ and we will obtain it by
estimation of the remaining parameters. From now on, in the
cases where there is no risk of confusion, the dependences of
variables p and k are not written down for brevity.

Using a laser light source, the irradiances Io and Ir are modeled
by Gaussian functions. By Taylor expansion, the Gaussian profile
is representable by a high-degree polynomial with degree equal
to the order of approximation desired or, alternatively, by any
appropriate analytic bidimensional surface, e.g. splines. In this
sense, the proposed algorithm has no restriction over the illumi-
nation profile if a polynomial is used to represent it. In order to
make a simple and intuitive description of this algorithm, we
consider the particular case when a second-degree polynomial
(parabolic profile or second-order approximation of Gaussian
profile) is sufficient, namely Io � Io and Ir � I r , where Io and I r

are second-degree polynomials. Thereby, a� IoþI r is approxi-
mated to second-degree polynomial that we can write in a
convenient notation as [1]

a�
X2

u ¼ 0

Xu

v ¼ 0

Cuvxvyu�v, ð3Þ

where CuvAR are coefficients. As Io and I r are second-degree
polynomials then the product 2IoI r � b2=2 is a fourth-degree
polynomial:

1

2
b2
�
X4

u ¼ 0

Xu

v ¼ 0

Duvxvyu�v, ð4Þ

where DuvAR are coefficients.
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