Quaternary International 347 (2014) 113-121

Contents lists available at ScienceDirect

Quaternary International

journal homepage: www.elsevier.com/locate/quaint

Chronology of the Youfang site and its implications for the emergence of microblade technology in North China

Xiaomei Nian^{a, *}, Xing Gao^a, Fei Xie^b, Huijie Mei^c, Liping Zhou^d

^a Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology,

Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing 100044, China

^b Cultural Relics of Hebei Province, Shijiazhuang 050000, China

^c Hebei Normal University, College of Culture and History, Shijiazhuang 050024, China

^d Laboratory for Earth Surface Processes, Department of Geography, Peking University, Beijing 100871, China

ARTICLE INFO

Article history: Available online 23 June 2014

Keywords: Youfang site Nihewan Basin Optically Stimulated Luminescence (OSL) dating Microblade technology Late Paleolithic

ABSTRACT

The Youfang Paleolithic site, located in the eastern Nihewan Basin, Hebei Province, China, was discovered in 1984. However, the microblade assemblages which were excavated from the site lacked reliable chronological data. In this study, an optical dating technique was applied to nine samples from Late Pleistocene eolian sequences at the site. The ages of three samples from artifact-bearing deposits were in the range of ca. 26-29 ka with depths between 2.1 m and 2.9 m obtained with medium-grained quartz, corresponding to Marine Isotope Stage 3 (MIS3). These displayed evidence of a longer-term climate trend, in which the climate became gradually warmer and more humid. The sample from the upper culture layer was dated to 26.4 ± 2.1 ka. Five samples taken from the lower culture layer yielded ages between ca. 28 ka and 43 ka. The results suggest that human occupation at the Youfang site ranged from ca. 26 ka to 29 ka. Indeed, the Nihewan Basin yields the oldest microblade site in northern high latitudes (40° N), and offers a unique opportunity to study the emergence and characteristics of microblade technologies in northeast Asia. Nevertheless, extensive archeological field surveys and excavations are still needed to understand further the developmental process of microblade technologies in the region.

1. Introduction

The transition from Early Paleolithic to Late Paleolithic in North China (ca. 30,000 years ago) was mainly marked by the appearance of both blade and microblade technologies, in addition to the presence of art/symbolism (Gao and Norton, 2002). Microblade technology included the making of microblade tools: typical examples of this category of artifact are microblade cores, microblades and tools made with microblades, generally mounted in bone or wood to form complex tools (An, 1978; Goebel, 2002; Elston et al., 2011), rather than 'small tools'. Microblade technology was a catalyst for a major revolution in lithic technology in northern China for societies based upon hunter–gatherer practices which then experienced high levels of mobility driven by socioeconomic and climatic changes. Archeological discoveries of lithics were first made at the dawn of the 20th century, and numerous archeological sites with microblade assemblages have

* Corresponding author. E-mail address: nianxiaomei@ivpp.ac.cn (X. Nian).

E mail dairess, maintaoincieroppiacien (n. main).

http://dx.doi.org/10.1016/j.quaint.2014.05.053 1040-6182/© 2014 Elsevier Ltd and INQUA. All rights reserved. been found (and subjected to detailed study) since the early 1950s. There are now more than 200 archeological sites or site clusters with microblades identified throughout many provinces including Heilongjiang, Liaoning, Jilin, Inner Mongolia, Hebei, Shanxi, Sha'anxi, Henan, Ningxia, Gansu, Qinghai, Xinjiang, among others (see e.g. Tong, 1979; Chen, 1984; Chen and Wang, 1989; Bettinger et al., 1994; Lu, 1998; Gao et al., 2013; Qu et al., 2013) (Table 1 and Fig. 1).

At present, however, where and when microblade technology originated and how the technology developed remains controversial. For instance, most scholars subscribe to the view that the Lake Baikal region of Siberia was the cradle of microblade technology and North China was simply one of the areas to which it spread (see e.g. Pei, 1955; Keates et al., 2007; Kuzmin, 2007; Elston et al., 2011); some scholars (see e.g. Smith, 1974; Jia, 1978) have hypothesized that North China was the source of microblade technology and that, from there, the technology spread to other parts of Asia and across Beringia to North America.

The ages obtained for some typical Upper Paleolithic sites with microblades in northern China are shown in Table 1. Three sites, at Longwangchan in Sha'anxi Province, Chaisi/Dingcun 77:01 and the

 Table 1

 The ages of the layers bearing microblades for Upper Paleolithic sites mentioned in the text of northern China.

Sites name	Longitude/	Layer	Material	Lab no.	Dating	Age			Reference
	Latitude				method	Uncal. BP	Cal. BP (68%)	ka	
Longwangchan	N36°09′45″,	Layer 4 (0.43 m)	Charcoal	BA06005	AMS ¹⁴ C	21,405 ± 75	25,189-25,854	_	Zhang et al., 2011
Loc. 1, Shaanxi	E110°26'15"	Layer 4 (0.63 m)	Charcoal	BA06006 BA06009	AMS ¹⁴ C AMS ¹⁴ C	$20,915 \pm 70$ $20,995 \pm 70$	24,683–25,232 24,771–25,498	_	Zhang et al., 2011 Zhang et al. 2011
		Layer 4 (0.73 m)	Charcoal	BA091131	AMS ¹⁴ C	$20,335 \pm 70$ $20,710 \pm 60$	24,489–24,931	_	Zhang et al., 2011 Zhang et al., 2011
		Layer 5 (1.18 m)	Charcoal	BA06008	AMS ¹⁴ C	$21,920\pm80$	25,963-26,673	-	Zhang et al., 2011
		Layer 5 (1.23 m)	Charcoal	BA06007	AMS ¹⁴ C	$21,740 \pm 115$	25,455-26,531	-	Zhang et al., 2011 Zhang et al., 2011
		Layer 5 (1.43 m)	Charcoal	BA091132 BA091133	AIVIS ¹⁴ C	$22,105 \pm 50$ $22,200 \pm 75$	26,185-26,870	_	Zhang et al., 2011 Zhang et al. 2011
		Layer 6 (2.23 m)	Charcoal	BA091129	AMS ¹⁴ C	$24,145 \pm 55$	28,551-29,303	_	Zhang et al., 2011 Zhang et al., 2011
		Layer 6 (2.43 m)	Charcoal	BA091130	AMS 14C	$22,230 \pm 55$	26,288-27,395	_	Zhang et al., 2011
		Layer 4 (0.2 m)	*FG quartz	L1387	OSL	_	_	21.4 ± 1.1	Zhang et al., 2011
		Layer 4 (0.4 m)	FG quartz	L1388 11380	OSL	_	_	23.0 ± 1.0 26.8 ± 1.2	Zhang et al., 2011 Zhang et al., 2011
		Layer 5 (0.8 m)	FG quartz	L1390	OSL	_	_	20.3 ± 1.2 24.2 + 1.0	Zhang et al., 2011 Zhang et al., 2011
		Layer 5 (1 m)	FG quartz	L1391	OSL	_	_	22.6 ± 1.0	Zhang et al., 2011
		Layer 5 (1.2 m)	FG quartz	L1392	OSL	_	-	22.8 ± 1.1	Zhang et al., 2011
		Layer 5 (1.4 m)	FG quartz	L1393	OSL	-	-	23.1 ± 1.1	Zhang et al., 2011
		Layer 5 (1.6 m)	FG quartz	L1394 11395	OSL	_	_	25.2 ± 1.3 25.6 ± 1.2	Zhang et al., 2011 Zhang et al. 2011
		Layer 6 (2 m)	FG quartz	L1396	OSL	_	_	25.0 ± 1.2 25.1 ± 1.2	Zhang et al., 2011 Zhang et al., 2011
		Layer 6 (2.2 m)	FG quartz	L1397	OSL	_	_	25.8 ± 1.2	Zhang et al., 2011
		Layer 6 (2.4 m)	FG quartz	L1398	OSL	_	_	28.7 ± 1.4	Zhang et al., 2011
		Layer 6 (2.6 m)	FG quartz	L1399	OSL	_	_	27.7 ± 1.3	Zhang et al., 2011 Zhang et al., 2011
		Layer 6 (2.0 III)	FG quartz	L1400	OSL	_	_	28.0 ± 1.3 28.8 ± 1.4	Zhang et al., 2011 Zhang et al. 2011
Chaisi/*DC	N35°50′,	Sand-gravel	Shell	ZK-0635	*Conv. ¹⁴ C	25,650 ± 800	29,683-31,318	_	IA-CASS, 1991
77:01, Shanxi	E111°25'	layer							
Xiachuan	N35°27′,	IT1(2)	Charcoal	ZK-0385	Conv. ¹⁴ C	$15,940 \pm 900$	18,212-20,266	-	IA-CASS, 1991
Loc. I, Shanxi	E112°02'	112-6(2) 1T8(2)	Charcoal/mud	ZK-0384 ZK-0417	Conv. ¹⁴ C	$21,090 \pm 1000$ $23,220 \pm 1000$	24,042-26,668	_	IA-CASS, 1991
Xiachuan		-	Charcoal	ZK-393	Conv. ¹⁴ C	$20,700 \pm 600$	23,964-25,608	_	Chen and
Loc.2, Shanxi							.,		Wang, 1989
Xiachuan		IIIT1-2(2)	Mud	ZK-0494	Conv. ¹⁴ C	$17,860 \pm 480$	20,716-22,125	-	IA-CASS, 1991
*SSY, Shanxi Viashuan		IVT101-103(2)	Peat	ZK-0497	Conv. ¹⁴ C	$18,040 \pm 480$	20,937-22,274	-	IA-CASS, 1991
*SWP. Shanxi		_	CharCoar	ZR-702	conv. c	$13,900 \pm 300$	10,554-17,452	-	Wang, 1989
,		_	Charcoal	ZK-634	Conv. ¹⁴ C	19,600 ± 600	22,746-24,210	_	Chen and
					14				Wang, 1989
Shizitan, Shanxi	N36°02′, F110°32′	*C-zone	Burnt bone	BA 93186	AMS ¹⁴ C	10,490 ± 540	11,404–12,823	-	Yuan et al., 1998
	2110 52	C-zone	Burnt bone	BA 93187	AMS 14C	$12,660 \pm 190$	14,606-15,444	_	Yuan et al., 1998
		(0.5–0.8 m)					,,		
		C-zone	Burnt bone	BA 93188	AMS ¹⁴ C	$13,590 \pm 220$	15,991–16,966	-	Yuan et al., 1998
		(1.15–1.3 m)	Purnt hono	PA 02190	AMC 14C	14240 . 250	17 209 17 940		Vuen et al. 1009
		(1.46 - 1.78 m)	Buille Dolle	DA 95189	AIVIS C	$14,340 \pm 230$	17,208-17,849	_	fuall et al., 1996
		*E-zone	Bone	BA 93190	AMS 14C	11,490 ± 110	13,245-13,536	_	Yuan et al., 1998
		(2.7 m)							
		East zone	Bone	BA 93191	AMS ¹⁴ C	$14,720 \pm 160$	17,635–18,395	-	Yuan et al., 1998
Xueguan Shanxi	N36°24′	(5.3 m) —	Charcoal	BK81016	Conv ¹⁴ C	13170 ± 150	15 659-16 536	_	IA-CASS 1991
Aueguan, ShanAi	E111°05′		Charcoar	DIGITOTO	conv. c	15,170 ± 150	13,033 10,330		IT CH35, 1551
PY-03, Ningxia	N 35.8°,	-	Charcoal	CAMS94203	AMS 14C	$18,350 \pm 70$	21,688-22,323	_	Ji et al., 2005
	E106.6°		<i>a</i> , ,		110				
PY-04, Ningxia	N35.8°, F106.6°	-	Charcoal	CAMS94202	AMS ¹⁴ C	$10,670 \pm 40$	13,422-13,688	_	Barton et al., 2007
Pigeon Mountain.	N38.04°.	*S-profile.	Charcoal	Beta 97241	Conv. ¹⁴ C	10.230 + 50	11.808-12.099	_	Elston et al., 1997
*QG3, Ningxia	E105.85°	stratum E				,			,,
		S-profile,	Charcoal	Beta 86731	Conv. ¹⁴ C	$11,620 \pm 70$	13,373-13,646	-	Elston et al., 1997
		stratum F	Channal	Data 07242	Com. 14C	12 710 . 70	14702 15 415		Elatar at al. 1007
		S-pronie,	Charcoal	Beta 97242	Conv. C	$12,710 \pm 70$	14,793-15,415	-	Eiston et al., 1997
		*SW-profile,	Charcoal	Beta 86732	Conv.14C	$10,020 \pm 60$	11,373-11,708	_	Elston et al., 1997
		stratum D							
		SW-profile,	Charcoal	Beta 97346	Conv. ¹⁴ C	10,130 \pm 70	11,522-11,946	-	Elston et al., 1997
Shuidonggou	N38º10/40//	stratum D	Charcoal		AMS 14C	0707 01	13 078 12 206	_	Linet al 2000
Loc. 12. Ningxia	E106°29'40",	Layer 11	Ouartz	LUGU0-54 IEE1110	OSL	5/5/±91 	- -	- 11.6 + 0.6	Pei et al., 2008;
Youfang, Hebei	N40°14′,	Upper layer	FG quartz	-	OSL	_	_	14 ± 4	Tsuneto et al., 2009
	E114°41′	of the artifact	Polymineral	-	OSL	-	-	14 ± 3	Tsuneto et al., 2009
		horizon	EC quarte		051			16 . 2	Trupoto et al. 2000
			Polymineral	_	OSL	_	_	10 ± 3 16.2 ± 2	Tsuneto et al., 2009

Download English Version:

https://daneshyari.com/en/article/1041091

Download Persian Version:

https://daneshyari.com/article/1041091

Daneshyari.com