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Abstract

An analytical expression of direct tunneling time of an electron through a nanometer-thick trapezoidal barrier has been derived.

It is found that the direct tunneling time is independent of the thickness of the SiO2 barrier for the SiO2 layers thicker than 1 nm,

which are used in advanced MOS (metal-oxide-semiconductor) devices. By applying a voltage to the barrier layer, the direct tun-

neling time becomes shorter than that obtained without the applied voltage. The nonparabolic energy-momentum dispersion of

the barrier layer increases the direct tunneling time as compared to the parabolic one. However, the nonparabolic effect is negligible

for high electron energy. It is also shown that the tunneling time obtained by the phase time is shorter than that calculated by the

semiclassical approach for high electron energy. However, both of the calculated tunneling times have not been able to explain the

reason why the calculated tunneling time are orders of magnitude shorter than the highest time resolution achievable in the silicon-

based MOS devices.
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1. Introduction

Since introduced by Wigner [1] more than 40 years

ago, the tunneling time of an electron through a barrier

is still of interest in the study of quantum transport in

heterostructures because the tunneling time is a key

parameter for ultimate performance evaluations of reso-

nant tunneling diodes, traveling-wave tunnel monolithic
integrated circuits for picosecond applications, and

infrared resonant tunneling lasers [2]. In recent years,

the subject has received considerable attention in view

of potential use of these structures in device fabrication

such as a single barrier varactor diode for generating

power up to submillimeter wave frequencies [3,4]. For

a review of the literature on the tunneling time, see the

recent article by Olkhovsky and Recami [5].

The Wigner phase time approach, which was proved

to be the best model by Steinberg and Chiao [8], has

been adopted by Lee [6] and Paranjape [7] in calculating

electron direct tunneling time through a square potential

barrier. However, they did not consider the effects of
voltage applied to the barrier in which the square barrier

becomes trapezoidal one.

In this paper, the electron direct tunneling time

through a trapezoidal barrier is derived by employing

the Wigner phase time. The results will provide us more

precise information on the direct tunneling time and a

basis of estimating heterostructure device operation

frequencies.
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2. Theoretical model

The schematic energy diagram of a heterostructure

with a voltage applied to the barrier is shown in Fig.

1. Here, the barrier width and height are L and U0,

respectively, Vb is the voltage applied to the barrier,
and e is the electronic charge. We consider that the elec-

tron effective mass in region I is the same as that in re-

gion III (m1) and in region II that is m2.

We further consider the time-independent electron

wave function in each region as [9]

wðzÞ ¼

A expðik1zÞ þ B expð�ik1zÞ for z 6 0;

C exp
R z
0
kbðz0Þdz0

� �
þD exp �

R z
0
kbðz0Þdz0

� �
for 0 < z < L;

G expðik3zÞ þ H expð�ik3zÞ for z P L.

8>>><
>>>:

ð1Þ
The incident wave Aexp(ik1z) has the energy

E ¼ �h2k21
2m1

; ð2Þ

where �h is the reduced Planck constant and E is smaller

than the barrier height U0. The wave numbers kb(z) and
k3 are expressed as follows:

kbðzÞ ¼
2m2ðV ðzÞ � EÞ

�h2

� �1=2

; ð3Þ

where V(z) = U0 � eFz is the potential energy profile of

the barrier, F = Vb/L is the electric field in the barrier,

and

k3 ¼
2m1ðE þ eV bÞ

�h2

� �1=2

. ð4Þ

With the boundary conditions at z = 0 and z = L,

which are given by [10]
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;

ð5Þ
it is easy to find the relation between the constants G

and A in Eq. (1). The result can be written as

where u ¼
R L
0
kbðzÞdz. The magnitude of f is equal to

jf j ¼
2
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and the phase of f is given by
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If the voltage applied to the barrier is zero (F = 0),

then k3 = k1, k0b ¼ kLb � c ¼ ð2m2ðU0 � EÞ=�h2Þ1=2 and

the expression of f is the same as that given by Lee [6]

f ¼
2k3c 2k3ccoshcLþ i m2
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k23�m1
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n o
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ð9Þ
The direct tunneling time s of an electron through the

trapezoidal barrier is obtained by using the Wigner
phase time approach [6].

s ¼ m1

�hk3

o/
ok3

þ L
	 


. ð10Þ

Substituting Eq. (8) into Eq. (10), we get
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