
Synchronization configurations of two coupled double pendula

Piotr Koluda, Przemyslaw Perlikowski, Krzysztof Czolczynski, Tomasz Kapitaniak ⇑
Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, Lodz, Poland

a r t i c l e i n f o

Article history:
Received 1 August 2013
Accepted 9 August 2013
Available online 22 August 2013

Keywords:
Double pendulum
Synchronization
Energy balance

a b s t r a c t

We consider the synchronization of two self-excited double pendula hanging from a hori-
zontal beam which can roll on the parallel surface. We show that such pendula can obtain
four different robust synchronous configurations. Our approximate analytical analysis
allows to derive the synchronization conditions and explains the observed types of synchro-
nizations. We consider the energy balance in the system and show how the energy is trans-
ferred between the pendula via the oscillating beam allowing the pendula’ synchronization.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Groups of oscillators are observed to synchronize in a diverse variety of systems [1,3,15,18,24–26], despite the inevitable
differences between the oscillators. Synchronization is commonly the process where two or more systems interact with each
other and come to oscillate together. The history of synchronization goes back to the 17th century when Ch. Huygens ob-
served weak synchronization of two pendulum clocks [9]. Recently the phenomenon of the synchronization of the clocks
hanging on a common movable beam has been the subject of research by a number of authors [2,4–8,10–14,16,17,19–
21]. These studies have explained the phenomenon of synchronization of a number of single pendula. The problem of the
synchronization of double pendula is less investigated. Fradkov et al. [22] developed the control system which allows the
experimental synchronization of two double pendula. The occurrence of the synchronous rotation of a set of four uncoupled
nonidentical double pendula arranged into a cross structure mounted on a vertically excited platform has been studied in
[23]. It has been shown that after a transient, many different types of synchronous configurations with the constant phase
difference between the pendula can be observed.

In this paper we consider the synchronization of two self-excited double-pendula. The oscillations of each pendulum are
self-excited by the escapement mechanism associated with the lower parts (lower pendula) of each double-pendulum. We
show that two such double-pendula hanging on the same beam can synchronize both in phase and in antiphase. We give
evidence that the observed synchronous states are robust as they exit in the wide range of system parameters and are pre-
served for the parameters’ mismatch (the pendula with different lengths are considered). The performed approximate ana-
lytical analysis allows to derive the synchronization conditions and explains the observed types of synchronizations. The
energy balance in the system allows to show how the energy is transferred between the pendula via the oscillating beam.

This paper is organized as follows. Section 2 describes the considered model of the coupled double pendula. In Section 3
we derive the energy balance of the synchronized identical pendula. Stable synchronous configurations of double pendula
have been identified in Section 4. Section 5 presents the results of our numerical simulations and describes the observed
synchronization states. Finally, we summarize our results in Section 6.
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2. The model

The analyzed system is shown in Fig. 1. It consists of the rigid beam and two double pendula suspended on it. The
beam of mass M can move in horizontal direction, its movement is described by coordinate X. The beam is connected
to the refuge by a linear spring with stiffness coefficient KX and linear damper with damping coefficient CX . Each double
pendulum consists of two light beams of lengths Lci; Lsi and two masses Mci and Msi, where i = 1,2, mounted at beam’s
ends. Subscripts s and c describe respectively upper and lower parts (pendula) of each double pendulum (see Fig. 1).
The lower parts (pendula) are mounted to the upper parts (pendula) at the distances Lai from the points in which double
pendula are mounted to the beam M. The motion of each double-pendulum is described by angles uci (lower pendulum)
and usi (upper pendulum). The oscillations of the double pendula are damped by the viscous dampers Csi and Cci (not
shown in Fig. 1). The lower pendula of each double pendulum are excited by the clock escapement mechanism (described
in details in [10]) represented by momentum MDi which provide the energy needed to compensate the energy dissipation
due to the viscous friction Csi;Cci and to keep the pendula oscillating [1]. This mechanism acts in two successive steps (the
first step is followed by the second one and the second one by the first one). In the first step if 0 < ðuci �usiÞ < cN then
MDi ¼ MNi and when ðuci �usiÞ <0 or cN < ðuci �usiÞ then MDi ¼ 0, where cN and MNi are constant values which charac-
terize the mechanism. For the second stage one has for �cN < ðuci �usiÞ < 0 MDi ¼ �MNi and MDi ¼ 0 for 0 < ðuci �usiÞ or
�cN > ðuci �usiÞ.

Note that the system shown in Fig. 1 can be considered as the two-dimensional model of Huygens’ experiment (upper
pendula represent clocks’ cases and lower pendula clocks’ pendula) [10].

The equations of motion of the considered system are as follows:
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where i = 1,2.
Considering mass Mc1, length Lc1 of the first lower pendulum and gravitational acceleration g as reference parameters one

can rewrite Eqs. (1)–(3) in the dimensionless form:

Fig. 1. The model of two double pendula hanging from a horizontal beam.
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