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Abstract

Asymptotic formulae of Liouville–Green type for general linear ordinary differential equations of an

arbitrary even-order 2m are investigated. A theorem on asymptotic behaviour at the infinity of 2m linearly
independent solutions is proved. It is shown that numerous results known in the literature are contained in

this theorem as particular cases.
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1. Introduction

We investigate the asymptotic form of (2m) linearly independent solutions for the even-order
differential equation
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as x ! 1, where x is the independent variable. We use the usual notation yðjÞ ¼ djy=dxj, in
particular the prime will denote d=dx. The functions pjð06 j6mÞ and qjðl6 j6mÞ are defined on
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an interval ½a;1Þ and are not necessarily real-valued, while p0 and pm are nowhere zero in this
interval. The Sturm–Liouville equation

ðp0y0Þ0 þ p1y ¼ 0 ð2Þ
is a special case of Eq. (1). It has solutions given by the Liouville–Green asymptotic formula at
x ! 1:
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Furthermore, if p1 ¼ p2 ¼ � � � ¼ pm�1 ¼ 0 and q1 ¼ q2 ¼ � � � ¼ qm ¼ 0 in (1), then Eq. (1) reduces
to

ðp0yðmÞÞðmÞ þ pmy ¼ 0: ð4Þ
This even-order equation was considered by Hinton [1] who showed that at x ! 1 Eq. (4) has
solutions
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where wkð16 k6 2mÞ are the ð2mÞth roots of ()1).
The formula (5) extends the form (3). Eastham [2] considered the nth order differential equation

ðrn�1 � � � ðr2ðr1y0Þ0Þ0 � � �Þ0 þ qy ¼ 0: ð6Þ
He showed that (6) has solutions ykð16 k6 nÞ as x ! 1, with asymptotic forms
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where wkð16 k6 nÞ are the nth roots of ()1) with

Q ¼ fq=r1r2 � � � rn�1g
1
n: ð8Þ

We will see in Section 5 that (3), (5) and (7) are contained in our results as special cases. In this
paper we use the recent asymptotic theorem of Eastham (see Section 2 of [4]) to obtain the
solutions of (1). General features of our method are given in Sections 2 and 3. The main result for
(1) is given in Section 4. Section 5 contains some comments.

2. The general method

We write (1) in the standard form of a first-order system used in [6]:

Y 0 ¼ AY ; ð9Þ
where y appears as the first component of Y , and AðxÞ is the n� n matrix whose entries aijðxÞ are
given by
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