

Available online at www.sciencedirect.com

Energy Conversion and Management 46 (2005) 385-401

www.elsevier.com/locate/enconman

Non-linear modeling of micro-turbines using NARX structures on the distribution feeder

Francisco Jurado *

Department of Electrical Engineering, University of Jaén, 23700 Alfonso X, EUP Linares (Jaén), Spain Received 22 August 2003; received in revised form 29 December 2003; accepted 21 March 2004

Abstract

There is an increasing demand for an accurate model of a micro-turbine to study the transient and long term stability of the overall distribution system, the interconnected network formed by generators, loads and distribution lines.

The computational burden required for simulation is highly dependent on the complexity and accuracy of each generator model. The manufacturer often needs to provide the user a reliable low complexity prototype model of the micro-turbine generator set, that is sufficiently accurate for the above application.

In this paper, the non-linear autoregressive exogenous (NARX) approach is used to analyze the dynamics of this micro-turbine.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Distributed generation; Gas turbines; Modeling; Non-linear systems

1. Introduction

While designs based on linear models are adequate in certain circumstances, new techniques for the analysis and design of gas turbine engines have been employed [1] to accommodate non-linear effects. As a consequence, gas turbine engine modeling has received special attention in the last few years in the literature devoted to non-linear system identification and analysis.

The first non-linear models to be proposed were based on physical principles applied in the time domain. These models are also known as thermodynamic models. The continuous time models,

^{*} Tel.: +34-953-026-508; fax: +34-953-026-518.

E-mail address: fjurado@ujaen.es (F. Jurado).

^{0196-8904/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.enconman.2004.03.012

Nomenclature

Micro-	turbine
$A_{\rm cc}$	acceleration signal
a, b, c	valve parameters
c_{pa}	specific heat of air at constant pressure
c_{pg}	specific heat of combustion gases
c_{ps}	specific heat of steam
$\overset{P^{2}}{D}$	load damping constant
e_1	valve position
$F_{\rm d}$	fuel demand signal
\ddot{H}	inertia constant
LHV	lower heating value
Κ	parameter of radiation shield
$k_{ m f}$	fuel system gain constant
$k_{\rm LHV}$	factor which depends on LHV
M	mechanical starting time $= 2H$
N	rotation speed of gas turbine
$N_{\rm ref}$	reference speed
$P_{\rm c}$	compressor power consumption
$p_{\rm cin}$	air pressure at compressor inlet
$p_{\rm cout}$	air pressure at compressor outlet
$P_{\rm m}$	mechanical power
P_{T}	total mechanical power delivered by turbine
p_{Tin}	pressure of combustion gases at turbine inlet
p_{Tout}	pressure of combustion gases at turbine outlet
R	speed regulation or droop
S	Laplace transform variable
Т	temperature signal
t	time
$T_{\rm m}$	mechanical torque delivered by turbine
$T_{\rm cout}$	outlet air temperature
$T_{\rm is}$	temperature of injected steam
$T_{\rm ref}$	gas turbine rated exhaust temperature
$T_{\rm Tin}$	turbine inlet gas temperature
Wa	air mass flow into compressor
$w_{\rm f}$	fuel mass flow
Wg	turbine gas mass flow
w_{is}	injection steam mass flow
Δh_{25}	specific enthalpy of reaction at reference temperature of 25 °C
$\Delta h_{\rm IC}$	isentropic enthalpy change for a compression from p_{cin} to p_{cout}
$\Delta h_{ m IT}$	isentropic enthalpy change for a gas expansion from p_{Tin} to p_{Tout}

386

Download English Version:

https://daneshyari.com/en/article/10414826

Download Persian Version:

https://daneshyari.com/article/10414826

Daneshyari.com