

Available online at www.sciencedirect.com

SCIENCE d DIRECT®

Communications in Nonlinear Science and Numerical Simulation 10 (2005) 95–101 Communications in Nonlinear Science and Numerical Simulation

www.elsevier.com/locate/cnsns

Discrepancy principle for the dynamical systems method

A.G. Ramm *

Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA Received 7 April 2003; received in revised form 7 April 2003; accepted 23 May 2003

Available online 1 August 2003

Abstract

Assume that Au = f

is a solvable linear equation in a Hilbert space, $||A|| < \infty$, and R(A) is not closed, so this problem is illposed. Here R(A) is the range of the linear operator A. A dynamical systems method for solving this problem, consists of solving the following Cauchy problem:

 $\dot{u} = -u + (B + \epsilon(t))^{-1} A^* f, \quad u(0) = u_0,$

where $B := A^*A$, $\dot{u} := du/dt$, u_0 is arbitrary, and $\epsilon(t) > 0$ is a continuously differentiable function, monotonically decaying to zero as $t \to \infty$. Ramm has proved [Commun Nonlin Sci Numer Simul 9(4) (2004) 383] that, for any u_0 , the Cauchy problem has a unique solution for all t > 0, there exists $y := w(\infty) :=$ $\lim_{t\to\infty} u(t)$, Ay = f, and y is the unique minimal-norm solution to Au = f. If f_{δ} is given, such that $||f - f_{\delta}|| \leq \delta$, then $u_{\delta}(t)$ is defined as the solution to the Cauchy problem with f replaced by f_{δ} . The stopping time is defined as a number t_{δ} such that $\lim_{\delta\to 0} ||u_{\delta}(t_{\delta}) - y|| = 0$ and $\lim_{\delta\to 0} t_{\delta} = \infty$. A discrepancy principle is proposed and proved in this paper. This principle yields t_{δ} as the unique solution to the equation:

$$\|A(B+\epsilon(t))^{-1}A^*f_{\delta}-f_{\delta}\|=\delta,$$

where it is assumed that $||f_{\delta}|| > \delta$ and $f_{\delta} \perp N(A^*)$. The last assumption is removed, and if it does not hold, then the right-hand side of the above equation is replaced by $C\delta$, where C = const > 1, and one assumes that $||f_{\delta}|| > C\delta$. For nonlinear monotone A a discrepancy principle is formulated and justified. © 2003 Elsevier B.V. All rights reserved.

PACS: 02.30.-f; 02.30.Tb; 02.30.Zz; 02.60.Lj; 02.60.Nm; 02.70.Pt; 05.45.-a Keywords: Ill-posed problems; Dynamical systems method; Discrepancy principle; Evolution equations

1007-5704/\$ - see front matter @ 2003 Elsevier B.V. All rights reserved. doi:10.1016/S1007-5704(03)00094-7

^{*} Tel.:+1-785-532-0580; fax: +1-785-532-0546.

E-mail address: ramm@math.ksu.edu (A.G. Ramm).

1. Introduction and statement of the result

Assume that

$$Au = f \tag{1}$$

is a solvable linear equation in a Hilbert space, $||A|| < \infty$, and R(A) is not closed, so problem (1) is ill-posed. Here R(A) is the range of the linear operator A. Without loss of generality, assume that $||A|| \le 1$. Let y be the unique minimal-norm solution to (1). A solvable equation (1) is equivalent to

$$Bu = A^*f, \qquad B := A^*A,\tag{2}$$

where A^* is the operator adjoint to A. One has $N(B) = N(A) := N := \{v : Av = 0\}$. Let $Q := AA^*$, and a > 0 be a number. Then $||B|| \leq 1$, $||Q|| \leq 1$, and $(B + a)^{-1}A^* = A^*(Q + a)^{-1}$, as one easily checks. Denote by E_{λ} and F_{λ} the resolutions of the identity of B and Q, respectively.

Let $\epsilon(t)$ be a monotone, decreasing function,

$$\epsilon(t) > 0, \quad \lim_{t \to 0} \epsilon(t) = 0, \quad \lim_{t \to \infty} \sup_{\frac{t}{2} \le s \le t} |\dot{\epsilon}(s)| \epsilon^{-2}(t) = 0.$$

A dynamical systems method (DSM) for solving (1), consists of solving the following Cauchy problem:

$$\dot{u} = -u + (B + \epsilon(t))^{-1} A^* f, \quad u(0) = u_0, \ \dot{u} := \frac{\mathrm{d}u}{\mathrm{d}t},$$
(3)

where u_0 is arbitrary, and proving that, for any u_0 , problem (3) has a unique solution for all t > 0, there exists $y := u(\infty) := \lim_{t\to\infty} u(t)$, Ay = f, and y is the unique minimal-norm solution to (1). These results are proved in [1]. If f_{δ} is given, such that $||f - f_{\delta}|| \le \delta$, then $u_{\delta}(t)$ is defined as the solution to (3) with f replaced by f_{δ} . The stopping time is defined as a number t_{δ} such that $\lim_{\delta\to 0} ||u_{\delta}(t_{\delta}) - y|| = 0$, and $\lim_{\delta\to 0} t_{\delta} = \infty$. A discrepancy principle for choosing t_{δ} is proposed and proved in this paper.

Let us assume $f_{\delta} \perp N(A^*)$. Then this discrepancy principle, yields t_{δ} as the unique solution to the equation

$$\|A(B+\epsilon(t))^{-1}A^*f_{\delta} - f_{\delta}\| = \delta, \quad \|f_{\delta}\| > \delta, \tag{4}$$

and we prove that

$$\lim_{\delta \to 0} \|u_{\delta}(t_{\delta}) - y\| = 0, \quad \lim_{\delta \to 0} t_{\delta} = \infty.$$
(5)

The basic results of this paper are formulated in Theorems 1.1 and 2.1. In Example 1 we construct a monotone, linear, non-injective operator A, for which discrepancy principle (7), with $u_{\delta,\epsilon}$ solving equation $A(u_{\delta,\epsilon}) + \epsilon u_{\delta,\epsilon} = f_{\delta}$, does not yield convergence to the minimal-norm solution of Eq. (1).

Theorem 1.1. If A is a bounded linear operator in a Hilbert space H, Eq. (1) is solvable, $||f_{\delta}|| > \delta$, $f_{\delta} \perp N(A^*)$, and $\epsilon(t)$ satisfies the assumptions stated above, then Eq. (4) has a unique solution t_{δ} , and (5) holds, where y is the unique minimal-norm solution to (1).

Download English Version:

https://daneshyari.com/en/article/10415160

Download Persian Version:

https://daneshyari.com/article/10415160

Daneshyari.com