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a  b  s  t  r  a  c  t

In  this  paper,  mathematical  approaches  were  developed  for predicting  the  hyperbaric  GMAW  process  arc
behavior  and  stability.  The  variation  of stochastic  parameters  is  related  to the  electrical  stability  that  can
be resolved  into  a number  of  varying  parameters.  The  results  show  that  most  of  the  arc  instability  can
be traced  to  the frequency  domain  of the voltage  or current  waveform.  Uncorrelated  current  and  voltage
wave frequencies  at higher  pressures  are  found  to  have  a great  influence  on  process  stability.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Acquisition and analysis of real-time electrical signals have been
reported by a number of authors including Subramaniam et al.
(1998). Because these data are produced in a sequence with defined
intervals, Witt (2007) provided the possibility to consider them
as stochastic variables and analyze the dataset as a time-series.
Diongue et al. (2008) modeled time-series by developing the theory
of seasonality that resulted in visualization of recurrent compo-
nents of a waveform. Such analyses may  form the basis of a model
for further predictions. However, Dilthey et al. (1996) found that a
universal model can be too intricate with regard to monitoring and
predicting the effect of the welding parameters involved.

Jones (1988) has described that welding under high pressure
conditions is often required in a variety of industries. One example
is subsea pipeline tie-ins and hot tapping in the oil and gas industry.
Such a welding process should be performed in a sustainable and
reliable way, meeting the standard metallurgical and mechanical
requirements for a welded joint. Performing the welding opera-
tion under the water without protecting the weld pool from water
media can suffer from low toughness and ductility as well as low
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process productivity. Dry hyperbaric welding was developed to
ameliorate the characteristics of wet  welding. Nixon (1995) has
defined different types of dry hyperbaric welding which generally
require a chamber to protect and seal the workspace from seawater.

Waller et al. (1990) proposed implementing high-speed charge-
coupled device (CCD) cameras inside the welding chamber to study
metal transfer phenomenon. However, existing chambers do not
offer enough space for such a device, and a suitable instrument
for very high pressures does not exist. Moreover, this kind of data
recording can also be very costly at the industrial scale. Thus, alter-
native methods are sought. According to Mazzaferro and Machado
(2009), monitoring the welding voltage and current waveforms
using stochastic approaches can be a reasonable substitute to cor-
relate the behavior of a specific parameter with the stability of the
welding process. However, the sampling frequency should be suffi-
ciently high in order to achieve statistical significance. McLarty and
Bahna (2009) discussed the effects of sampling frequency on wave-
form approximation and showed that high sampling frequency
results in a longer analysis time, while lower frequencies result
in data loss. Nevertheless, Zhu (2006) described the existence of a
specific frequency above which the analyses do not show any major
change in any subset of the waveforms, while the minimum statis-
tical significance is met, which is an indication of ergodic behavior.

Oliveira and Werlang (2007) defined ergodicity of a signal when
the frequency of a data collection is high enough to meet the sta-
tistical significance. They assigned “ergodic” to a process in which
every sequence or sizable sample is equally representative of the
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entire process. Alfaro et al. (2006) have applied the definition to the
processes in which an event recurs with a dominant frequency, as
in welding, where metal transfer occurs periodically.

A stable process could also show stationary behavior, which
means that calculated stochastic parameters are similar to those
of the “time-shifted” series. Once the welding process stabilizes
after the ignition phase, such behavior can be observed. Newland
(2005) argues that once a welding process shows both ergodic and
stationary characteristics, it can be monitored using any subset of
waveforms with a fixed number of samples. Thereafter, the statis-
tical parameters of each subset can be compared to the adjacent set
to study the instabilities during the process.

In the dry hyperbaric GMA  welding case, Fostervoll et al. (2009)
used the most outstanding statistical features on the entire process
regardless of its variation in subset waves. Although the general
trend was visualized, the optimization of the parameters and sig-
nificance of the calculation could not be verified. The objective of
this paper is to report on more advanced statistical analyses and
signal processing techniques to ensure the trustworthiness of the
trends.

2. Background

2.1. Stationary and ergodic processes

Box et al. (2008) defined a stochastic process as an infinite
ensemble of random variables. Let  ̋ be the sample space that con-
sists of members � ∈ ˝.  A continuum or discrete-time stochastic
process can be denoted by X(t,�), where there is one and only one
random value for each time t.

Because � is a random variable, it can take any real positive non-
zero value from 1 to n. The number n shows how many times the
process is repeated, and it is called the “realization” of the process.
If these conditions are met, the group of X(t,�) is representative of
a single process.

Moreover, each random process exhibits a single probability dis-
tribution function (PDF), and a set of these functions represents X(t)
in particular. The number of functions that take the value between x
and x + dx form the first probability distribution fX(x,t)dx.  The joint
probability distribution at times t1 and t2 can then be defined as
fXX(x1,t1; x2,t2)dx1dx2, and the third, fourth and subsequent distri-
butions can be defined in the same way; representing a random
process. The value of each function is positive, and the joint inte-
gration of all the functions is unity. In addition, it is assumed that
PDFs are dependent on time intervals. Engelberg (2007) showed
that if the following condition is met, the stochastic process will be
of a stationary type:

fX (x, t) = fX (x), fX (x1, t1; x2, t2) = fXX (x1, t1 + ε; x2, t2 + ε) (1)

More restrictively, Porat (1994) stated that the ergodic process
can be calculated as the expected values at time averages over a
single instance of the stochastic process:

E(X(t, �)) = lim
T→∞

1
T

∫ T/2

−T/2

X(t, � = �0)dt (2)

E(X(t, �)X(t + �t,  �)) = lim
T→∞

1
T

∫ T/2

−T/2

X(t, � = �0)X(t + 1, � = �0)dt

(3)

where the left hand sides of the equations are the expectations over
all � and the right hand sides are the expectations of a particular �.
If the time average is used in this way, the stochastic process must
be stationary.

2.2. The auto-correlation function

According to Tabachnick and Fidell (2007),  auto-correlation is a
mathematical representation of the degree of similarity between a
given time series and a lagged version of itself over successive time
intervals. It gives the measure of the correlation of X(t) with itself
at two  different times and is defined as

RXX (t1, t2) ≡ E(X(t1)X(t2)) (4)

If X(t) is stationary, the auto-correlation could be defined as a
function of time interval variable �:

RXX (�) ≡ E(X(t)X(t + �)) = lim
T→∞

1
T

∫ T/2

−T/2

X(t)X(t + �)dt (5)

A stochastic process where E(X(t)) = � (�: statistical average)
and RXX(t1,t2) = RXX(�) is called wide sense stationary.  It is assumed
that the welding waveforms are of this kind. According to the defini-
tion of an ergodic process, Eq. (5) shows that the ensemble average
(right hand side) can be used to represent the time average (left
hand side). The following equation describes this condition:

R(�) =
∫∞∫
−∞

x1x2fXX (x1, x2; �)dx1dx2 (6)

If x1 and x2 are not correlated, fXX(x1,x2;�) = fX(x1)fX(x2), which
zeros Eq. (6). In other words, a perfectly random process has
an auto-correlation value equal to zero. In addition, the auto-
correlation of a periodic function is periodic, with the same period
as events in the original signal. The auto-correlation function eval-
uates the time dependent behavior of a stochastic process.

2.3. Power spectral density (PSD)

Brockwell and Davis (2002) showed that the auto-correlation
function does not resolve the periodicities of a waveform because
it is periodic itself. Moreover, the power or energy of the wave-
form has not been taken into account because the auto-correlation
function is only concerned with the statistical average of the wave-
form. As a result, the power state of the time series over a range of
frequencies (ω) could be visualized by applying the Fourier trans-
formation of the waveform:

˚(ω) =
(∫ ∞

−∞
fX (t)e−2�iωtdt

)2

(7)

Nevertheless, because the time-series has been recorded
discretely, the Fourier integral does not exist. Alternatively, accord-
ing to the properties of the auto-correlation function and the
Wiener–Khinchin theorem defined by Strube (1985),  the power
spectral density (PSD) can be calculated by applying the Fourier
transform on the auto-correlation function.

PSDaverage = lim
T→∞

1
T

∫ T/2

−T/2

E(|X(t)|2)dt =
∫ ∞

−∞
F(R(�))(ω)dω (8)

According to Eq. (8),  if the waveform being analyzed is the
welding current, the standard deviation of the signal (|I(t)|2) will
represent the average power spectral density between the time
set-points (−T, T). Moreover, according to Luksa (2006) and Joseph
et al. (2003), the momentary arc power can be calculated by multi-
plying the average PSD with the momentary arc resistance. At high
sampling frequencies, the average values can be calculated using
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