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a  b  s  t  r  a  c  t

This  paper  considers  the  sensitivity  of three  sphere-fitting  algorithms  to real-world  measurement  errors.
It  pays  particular  attention  to nominally  spherical  surfaces,  such  as  those  typically  measured  by  tactile  and
optical profilometers,  addressing  the  limitations  of  sensor  gauge  range  and  angular  tolerance.  A  recently
proposed  linear  circle-fitting  algorithm  is  extended  to a sphere-fitting  algorithm  and  its performance
compared  to  two long  standing  sphere-fitting  algorithms;  namely  linear  and  non-linear  least-squares.
Sources  of  measurement  error  in  optical  profilometers  are  discussed,  and  user  defined  scan  parameters
are optimised  based  on the  results  of a designed  experiment.  The  performance  of  all  three  sphere-fitting
algorithms  are tested  on  a sphere  superimposed  with  varying  degrees  of  surface  irregularities  in  a  Monte
Carlo  simulation;  this  study  shows  that  both  linear  routines  display  a negative  skewness  in  their  radius
error  distribution.  Finally,  a method  of predicting  radius  uncertainty  is  offered  that  considers  the sur-
face  residual  that  remains  after  sphere-fitting  and  relates  this  to the  radius  uncertainty  of  the  chosen
algorithm.

© 2014 Elsevier  Inc.  All  rights  reserved.

1. Introduction

The contact lens and other closely linked optical industries have
been considering the use of raster-scanning metrology systems for
quality assurance since the early 90’s [1]. A key objective to quality
assurance is for every lens to pass under an instrument to determine
its key parameters, for example, radius of curvature, form errors,
and lens thickness. In reality, the complex nature of the moulding
processes prohibits this approach; it is far simpler to adopt a batch
sampling regime. Even with this very limited number of items to
measure, the soft, flexible nature of the product, combined with the
sources of error inherent in surface metrology instruments makes
it difficult and expensive to measure the radius of curvature [2–4].

In previous studies [5,6], sample data has been acquired using
the XYRIS 4000, a state-of-the-art surface metrology instrument
manufactured by TaiCaan Technologies Ltd. (Southampton, UK).
This instrument is custom engineered for applications such as
spherical form analysis, adopting a granite gantry to maximise
thermal and mechanical stability and using high-precision, 10 nm
resolution motion stages coupled with a 10 nm resolution, con-
focal optical probe. It has been observed that when analysing
3D surface scans there is an error in the estimate of radius of
curvature with all sphere-fitting algorithms [6]. In the case of a
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raster-scanning surface profiler, such as the XYRIS 4000, the probe’s
gauge range and angular tolerance limit the maximum scan area
for nominally spherical objects; this measurement area defines
the segment angle of the sphere that is considered by any post-
measurement fitting algorithm. Sun et al. [7] considered the impact
of the scan area on the algorithms used for calculating the underly-
ing radius of curvature, investigating the performance of non-linear
least-squares (NLLS) for small segment angles.

While NLLS has been demonstrated to generally produce the
best-fit [6,8,9], it is an iterative algorithm with its solution-time
being dependant on both the start estimation and the convergence
criteria; furthermore, its speed is also strongly influenced by the
size of the data-set, N, following an N2 relationship. Ultimately, the
systematic and random errors present in any real-world measure-
ment system, coupled with the influence of small segment angles,
may  negate any error reductions from adopting an NLLS algorithm.
The aim of this research is to revisit the influence of error sources on
the standard least-squares algorithms, while offering a new, alter-
native algorithm with reduced computational overhead and hence
speed benefits.

Section 2 extends a recently proposed linear circle-fitting algo-
rithm to a sphere-fitting algorithm, while Section 3 discusses
sources of measurement error in optical profilometers. In Section 4,
the impact of three, user-defined scan parameters on the estimated
radius are evaluated in a designed experiment. Section 5 compares
the performance of the new sphere-fitting algorithm to the existing
linear and non-linear least squares algorithms by superimposing
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varying degrees of Gaussian noise on a simulated, ideal spherical
surface in a Monte Carlo simulation. In Section 6, the results of the
Monte Carlo simulation are used to predict the uncertainty of the
estimated radius for measured data.

2. Least-squares sphere-fitting

The principle of least-squares fitting is well understood, namely
finding a surface that best-fits a data-set by minimising the sum
of the square of the residuals [10]. The linear relationship of the
parameters of a plane make this minimisation task easy, however,
the more complex relationships in the equation of a sphere com-
plicate the mathematics. The problem of fitting a sphere to a set of
points in space is not one exclusive to metrology, but finds its place
in archaeology, geography, and has been a topic of research since
the early 60’s [11].

Two popular least-squares approaches for the sphere-fit exist;
the first relies on linearising the equation of a sphere (linear least-
squares, LLS) and has been known since 1974 [12]. The second relies
on an iterative approach, such as Gauss Newton, to find the mini-
mum  (non-linear least-squares, NLLS). Forbes [13,14] provides full
details of the two approaches adopted for this study.

2.1. Summation least-squares

An alternative to these approaches for circle-fitting was iden-
tified by Bullock [15]; the mathematics are expanded here to a
sphere-fit to supplement the former methods. This routine, referred
to here as summation least-squares (SLS), makes use of domain
shifting and substitution to simplify the equation of a sphere, result-
ing in a direct solution of a third-order simultaneous equation. This
considerably reduces the computational cost when compared to
the usual Jacobian matrix solver required by the alternatives.

Assume, a spherical surface of radius, r, comprising of n points at
(xi, yi, zi). The data can be translated into a new coordinate space (u,
v, w) such that it has a new centre, (uc, vc, wc), nominally the origin.
With the centre as the origin, assumptions can be made about the
distribution of the coordinates that allow the least-squares min-
imising function to be linearised.

Applying the following definitions:

x̄ = 1
n

n∑
i=1

xi, ȳ = 1
n

n∑
i=1

yi, z̄ = 1
n

n∑
i=1

zi, (1)

and

ui = xi − x̄, vi = yi − ȳ, wi = zi − z̄ (2)

For a least-squares fit, we wish to minimise the function:

s =
∑

i

g(u, v, w)2 (4)

where

g(u, v, w) = (ui − uc)2 + (vi − vc)2 + (wi − wc)2 −  ̨ (5)

and

 ̨ = r2 (6)

Following Bullock’s approach, S (u, v, w, ˛) is partially differen-
tiated with respect to uc, vc, and wc to find the minima.

Using the following nomenclature:
∑

i

ui = Su,
∑

i

u2
i = Suu,

∑
i

u3
i = Suuu,

∑
i

uivi = Suv, etc.

(7)

The partial derivatives are simplified to:

ucSuu + vcSuv + wcSuw = Suuu + Suvv + Suww

2
(8)

ucSuv + vcSvv + wcSvw = Svuu + Svvv + Svww

2
(9)

ucSuw + vcSvw + wcSww = Swuu + Swvv + Swww

2
(10)

Eqs. (8)–(10) represent a third-order simultaneous equation,
which can be written in the matrix form, Ax = b:⎡
⎢⎣

Suu Suv Suw

Suv Svv Svw

Suw Svw Sww

⎤
⎥⎦

⎡
⎢⎣

uc

vc

wc

⎤
⎥⎦ = 1

2

⎡
⎢⎣

Suuu + Suvv + Suww

Suuv + Svvv + Svww

Suuw + Svvw + Swww

⎤
⎥⎦ (11)

This is solved for uc, vc, wc by pre-multiplying both sides by A−1.
To find the radius, r:

 ̨ = r2 = u2
c + v2

c + w2
c + Suu + Svv + Sww

n
(12)

And translating the centres back into (x, y, z) space:

xc = uc + x̄, yc = vc + ȳ, zc = wc + z̄ (13)

On evaluating the time taken to process 100,000 data-sets com-
prised of 51 × 51, 101 × 101 and 201 × 201 data points for LLS and
SLS, both algorithms’ timings scale approximately linearly with the
number of data points. Furthermore, the SLS algorithm is approxi-
mately twice as fast as LLS.

3. Sources of measurement error

Looking at the elements of a raster-scanning, coordinate mea-
surement machine, such as the XYRIS 4000, it is relatively
straightforward to identify sources of potential error. These are
categorised into two  areas, motion system errors and sensor errors.

Motion system errors may include:

• Stage resolution and accuracy – the smallest measurable step and
the relationship between theoretical and real-world position;

• Stage run-out – while at a nominally linear velocity during scan-
ning, there is an acceleration and deceleration phase;

• Stage pitch and roll – despite using high-end motion stages, the
sample will still wobble microscopically as it moves;

• Thermal expansion – both the metal stages and the granite gantry
expand and contract with changes in temperature;

• Non-orthogonal axes – alignment of the three different motion
systems that combine to raster scan the sample and adjust the
height of the sensor.

Sensor errors may  include:

• Abbe Error – the sensor is unlikely to be aimed perfectly perpen-
dicular to the measurement stages;

• Linearity – the response of the probe does not follow the actual
displacement;

• Spot size – the finite focal spot-size causes an averaging effect;
• Sensor noise – random ripple on the output, even in steady-state

conditions;
• Thermal response – temperature effects on air density;
• Angular tolerance – the slope of the sample may be too high to

return light;
• Gauge range – the range of surface heights over which the sensor

will operate.

In addition to the above errors, there are also a number of param-
eters that the user configures at the start of the measurement, all
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