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This work introduces the principles necessary to model and generate parallel flexure elements (i.e., com-
pliant members or flexible joints) that may be used to synthesize next-generation precision flexure
systems. These principles are extensions of the Freedom and Constraint Topologies (FACT) synthesis
approach, which utilizes geometric shapes to help designers synthesize flexure systems that achieve
desired degrees of freedom (DOFs). Prior to this paper, FACT was limited to the design of flexure systems
that consisted primarily of simple wire or blade flexure elements only. In this paper, the principles are
introduced that enable designers to use the same shapes of FACT to synthesize parallel flexure elements
of any geometry, including new and often irregularly-shaped elements (e.g., hyperboloids or hyper-
bolic paraboloids). The ability to recognize such elements within the shapes of FACT, therefore, enables
designers to consider a larger body of solution options that satisfy a broader range of kinematic, elastome-
chanical, and dynamic design requirements. Example flexure systems that consist of flexure elements,
generated using this theory, are provided as case studies.
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1. Introduction

Flexure systems consist of rigid bodies that are joined together
by flexure elements [1] (i.e., compliant members or flexible, spring-
like joints). These elements are directionally compliant and thus
behave like bearing elements in that they guide the system’s rigid
bodies to move in prescribed directions called degrees of freedom
(DOFs) via elastic deformation. As such, flexure systems (i) achieve
high resolution and repeatability, (ii) require no lubrication, (iii)
experience minimal friction and wear, (iv) are easily maintained,
and (v) often cost significantly less than other competing precision
bearing technologies (e.g., magnetic or air bearings).

The rigid bodies within most flexure systems are joined together
by simple wire, blade, and/or living hinge flexure elements [2-5]
like those shown in Fig. 1A. The wide-spread use of these common
flexure elements is due to the fact that they (i) possess DOFs that
are easy to visualize, (ii) are relatively easy to fabricate, and (iii)
are often the only flexure element options to which designers have
been exposed. The demand, however, for precision flexure systems
that possess greater kinematic, dynamic, and elastomechanic ver-
satility is growing as flexure-based applications are becoming more
sophisticated.
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This paper provides the theory necessary to model and generate
a significantly larger variety of flexure elements with geometries
that are often unconventional, like those shown in Fig. 1B, that
satisfy the requirements of such sophisticated applications. These
applications include multi-axis spatial micro/nano-manipulation
and assembly stages, advanced flexure bearing systems that guide
rigid bodies along complex motion paths, and microstructural
architectures that achieve unusual and often superior proper-
ties compared with most natural materials (e.g., negative thermal
expansion coefficient and Poisson’s ratio) [6-9]. Such architectures
are generally fabricated using additive micro/nano-3D printing
technologies such as micro-projection stereolithography [10-12]
because their flexure element constituents are small and often
irregularly-shaped and are thus not suited for conventional fab-
rication processes (e.g., waterjet, wire EDM, and milling). Although
this paper enables the generation of irregularly-shaped elements
like those in Fig. 1B, it also enables the generation of new elements
with regular features that possess unique constraint characteristics
and may be fabricated using conventional processes. As progress
toward high-resolution multi-material additive fabrication tech-
nology advances, however, flexure system designs for these and
other applications will be driven more by performance require-
ments and less by fabrication limitations.

The theory used to model and generate the flexure elements of
this paper is an extension of the Freedom and Constraint Topologies
(FACT) synthesis approach [13-15]. FACT utilizes a comprehen-
sive library of geometric shapes that represents the mathematics
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Fig.1. Common parallel flexure elements and example systems that consist of these
elements (A), and irregularly shaped parallel flexure elements with example systems

(B).

of screw theory [16-21] to help designers synthesize flexure sys-
tems. One set of shapes represents the flexure system'’s desired
DOFs while another set of shapes represents the regions of space
from which flexure elements may be selected that enable the sys-
tem to achieve those desired DOFs. In this way, designers may
rapidly consider and compare a multiplicity of design solutions
before selecting the final design. The shapes of FACT thus enable
designers to utilize the mathematics of screw theory in an intu-
itive way without requiring a mastery of its principles. Prior to the
theory of this paper, however, FACT and other screw-theory-based
synthesis approaches [22] were only capable of guiding designers
in synthesizing flexure systems that consisted primarily of simple
wire or blade flexures. This paper provides designers with the the-
ory necessary to utilize the same shapes of FACT to help designers
synthesize flexure systems constrained by a host of new and often
irregularly-shaped parallel flexure elements (Fig. 1B).

Such elements provide designers with a larger body of solutions
for achieving a given set of functional requirements. Suppose, for
instance, a designer wished to synthesize a flexure system that pos-
sessed a single screw DOF (i.e., a translation along an axis coupled
with a simultaneous rotation about the same axis). If the designer
is restricted to only use wire, blade, or living hinge flexure ele-
ments to synthesize such a system, the solution space is greatly
limited. If the designer is further restricted to only arrange these
elements in a parallel configuration such that they directly connect
a single rigid body to a fixed ground, it is not possible to achieve a
single screw DOF using blade or living hinge flexures. With these
restrictions, therefore, such a system may only be achieved using
wire flexures. An example is shown on the left side of the first row
of Fig. 1A under “Flexure Systems.” This system consists of wire

flexures and would achieve the desired screw DOF about an axis
that is perpendicular to and passes through the center of the flat
surface of the system’s stage. If the designer is no longer restricted
to only use wire, blade, or living hinge flexure elements, but could
also use the flexure elements generated using the theory of this
paper to achieve a similar screw DOF, the designer would have
access to a larger body of parallel design solutions. These solutions
would possess a broader variety of kinematic, elastomechanical,
and dynamic characteristics. Two examples of such systems are
found in Fig. 1B under “Flexure Systems.”

The main contributions of this paper include: (1) Principles are
introduced that enable designers to rapidly generate the geometry
of any general parallel flexure element using the shapes of FACT.
(2) Principles are also introduced that enable designers to rapidly
identify the DOFs of any parallel flexure element in an intuitive and
visual way. (3) The concept of ‘order of constraint’ is introduced as
a way of helping designers control exact- or over-constraint in sys-
tems that consist of general parallel flexure elements. (4) The theory
is introduced that enables designers to identify how well a parallel
flexure element constrains its unwanted motions while permit-
ting its intended DOFs based solely on how well constraint lines fit
inside its geometry. (5) Twenty five unconventional parallel flexure
elements are provided as an alternative to the classic wire, blade,
and living hinge elements commonly used in most existing flexure
systems. (6) The original steps of the FACT approach for synthe-
sizing parallel flexure systems is updated such that these systems
may be synthesized to include any parallel flexure element—not
just wire and blade flexures. (7) Parallel flexure system case stud-
ies are designed and fabricated to demonstrate the utility of this
paper’s theory.

It is important to recognize, that although most flexure sys-
tems do consist of the common variety of wire, blade, and/or living
hinge flexures, designers have implemented other differently-
shaped flexure elements prior to the theory of this paper. Hale, for
instance, designed a twisted flexure element that also possesses
a screw DOF [23]. Serpentine flexure elements (i.e., curved wire
flexures) are also becoming increasingly popular for use in various
MEMS applications [24]. Curved blade flexure elements have also
become popular for applications that require axisymmetric cylin-
drical packaging [25]. An exhaustive collection of existing flexure
elements is provided in Howell [26]. Many of these existing flexure
elements may also be modeled and analyzed using the theory of
this paper.

2. Background principles

This section reviews the principles of FACT that are necessary to
model and generate flexure elements.

2.1. Degrees of freedom

To better understand flexure elements, it is necessary to first
understand how to model the DOFs that they permit. According to
screw theory, there are three types of DOFs—translations, rotations,
and screws. Each of these motions may be modeled using a 6 x 1
twist vector, T [16,17]. In this paper, translations are depicted as
black arrows, rotations are depicted as red lines, and screws are
depicted as green lines along and about which a rigid body may
simultaneously translate and rotate according to its coupled pitch
value, p.

2.2. Basic constraint element
The most basic flexure constraint element is a wire flexure. A

wire flexure is a straight, long, slender beam that joins two rigid
bodies together as shown in Figs. 2A and B. The function of a wire
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