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a  b  s  t  r  a  c  t

Robust  parameter  design  (RPD)  has  recently  been  applied  in  modern  industries  in a  large  deal  of  processes.
This technique  is  occasionally  employed  as  a multiobjective  optimization  approach  using  weighted  sums
as a  trade-off  strategy;  in  such  cases,  however,  a considerable  number  of gaps  have  arisen.  In this  paper,
the  use  of normal  boundary  intersection  (NBI)  method  coupled  with mean-squared  error  (MSE)  functions
is  proposed.  This  approach  is  capable  of generating  equispaced  Pareto  frontiers  for  a  bi-objective  robust
design  model,  independent  of the  relative  scales  of  the  objective  functions.  To  verify  the  adequacy  of  this
proposal,  a central  composite  design  (CCD)  is  developed  with  combined  arrays  for  the  AISI 1045  steel
end  milling  process.  In  this  case  study,  a CCD  with  three  noise  factors  and  four  control  factors  are  used
to create  the  mean  and  variance  equations  for MSE  of  two  quality  characteristics.  The  numerical  results
indicate  the NBI-MSE  approach  is  capable  of  generating  a  convex  and equispaced  Pareto  frontier  to  MSE
functions  of  surface  roughness,  thus  nullifying  the  drawbacks  of  weighted  sums.  Moreover,  the  results
show  that  the  achieved  optimum  lessens  the  sensitivity  of  the  end milling  process  to  the  variability
transmitted by  the noise  factors.

©  2014  Elsevier  Inc.  All  rights  reserved.

1. Introduction

To make a process less sensitive to the action of noise vari-
ables, researchers have developed a design of experiments (DOE)
approach that promotes the best levels of control factors. The
approach, known as robust parameter design (RPD), improves the
variability control and minimizes the bias. The ways of utilizing
RPD can vary. For example, in their estimating of cutting condi-
tions of surface roughness in end milling machining processes [1],
used kernel-based regression and genetic algorithms (GA). Employ-
ing a hybrid Taguchi-genetic learning algorithm [2], relied on an
adaptive network-based fuzzy inference system to predict surface
roughness in end milling processes. To minimize surface roughness
in end milling machining processes [3], studied an application of GA
so as to optimize cutting conditions.
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This work presents an RPD that will facilitate the adaptive con-
trol application in end milling processes as well as contribute
to computer-integrated manufacturing scenarios [4–7]. Origi-
nally developed following a crossed-array, the RPD methodology
remains controversial due primarily to its various mathematical
flaws and statistical inconsistencies, such as the crossed-array’s
inability to assess the interaction between control and noise
variables [4,7,8]. To resolve such issues [9,10], proposed using
response surface methodology (RSM) with combined arrays. This
experimental strategy allows the computation of noise-control
interactions using a central composite design (CCD) with embed-
ded noise factors, generating the mean and variance equation as
from the propagation of error principle.

The general scheme of an RPD-RSM problem consists of per-
forming an experimental design while considering the noise factors
to be control variables and eliminating from the design any axial
points related to the noise factors [11]. Then a polynomial surface
for f(x, z) is estimated using the OLS or WLS  algorithm, obtaining
f(x, z) partial derivatives. This procedure leads to a response surface
for the mean ŷ(x) and another for the variance �̂2(x), considering
the noise-control factors interactions. This approach is called dual
response surface (DRS).
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Fig. 1. Graphical description of NBI method.

Applied widely by modern industries, RPD approaches for
multiresponse optimization problems have been only sparsely
developed [7,12,13]. Even in those works involving multiresponse
approaches, researchers appear to have generally neglected the
noise-control interactions, computing the mean and variance equa-
tions from crossed arrays or design replicates [4,13–19].

In the DRS method, the mean ŷ(x) and variance �̂2(x) may  be
optimized simultaneously considering different schemes [9,12,20],
for example, established an optimization scheme considering
Min
x∈˝

�̂2(x), subject to the constraint of ŷ(x) = T , where T is the target

for ŷ(x), and that, using a Lagrangean multiplier approach, evalu-
ates only one quality characteristic. [21] presented a bias-specified
robust design method formulating a nonlinear optimization
program that minimizes process variability subject to customer-
specified constraints on the process bias, such as |ŷ(x) − T | ≤ �. The
mean, variance, and target can also be combined in a mean-squared
error (MSE) function which must be minimized and subjected to a
set of constraints, as, for example, the experimental region. This
figure can be stated as Min

x∈˝
[ŷ(x) − T]2 + �2 [4,12–14,17,22–24].

Supposing that mean and variance may  assume differ-
ent degrees of importance, the MSE  objective function can
also be weighted, as MSEw = w1 · (ŷ(x) − T)2 + w2ċ �̂2(x), where
the weights w1 and w2 are pre-specified positive constants
[10,12,19,24]. Still, these weights can be experimented with
through different convex combinations, i.e., w1 + w2 = 1, with w1 > 0
and w2 > 0, generating a set of non-inferior solutions for multiple
objective optimization [19].

Extending the MSE  criterion to multiobjective problems, an
operator like a weighted sum may  be used [25,26] leading to
an objective function as MSET =

∑p
i=1[(ŷi − Ti)

2 + �̂2
i

]. If different
degrees of importance are attributed to each MSEi, the global objec-
tive function can be written as proposed by [27]

MSET =
p∑

i=1

wi · MSEi =
p∑

i=1

wi · [(ŷi − Ti)
2 + �̂2

i ] (1)

A common concern with multiobjective MSE optimization
is related to the convexity of Pareto frontiers generated using
weighted sums. According to [4], in most RPD applications, a
second-order polynomial model is adequate to accommodate the
curvature of process mean and variance functions. Thus, mean-
squared robust design models would contain fourth-order terms.
Consequently, the associated Pareto frontier might be non-convex
and non-supported efficient solutions could be generated. It is
important to state that a decision vector x* ∈ S is Pareto optimal if

there does not exist another x ∈ S such that fi(x) ≤ fi(x*) for all i = 1,
2, . . .,  k. According to [4], for the bi-objective case, the weighted
sum can be written as a convex combination of two MSE functions,
such as:

Min MSET = wMSE1 + (1 − w)MSE2 S.t. : x ∈  ̋ (2)

The weighted sum method, as described in Eq. (2), is widely
employed to generate the trade-off solutions for nonlinear multi-
objective optimization problems. According to [4], the bi-objective
problem of Eq. (2) is convex if the feasible set X is convex and the
MSE  functions are also convex. When at least one objective function
is not convex, the bi-objective problem becomes non-convex, gen-
erating a non-convex and even unconnected Pareto frontier. The
principal consequence of a non-convex Pareto frontier is that points
on the concave parts of the trade-off surface will not be estimated.
This instability is due to the fact that the weighted sum is not a
Lipshitzian function of the weight w [28]. Another drawback to the
weighted sums is related to the uniform spread of Pareto-optimal
solutions. Even if a uniform spread of weight vectors are used, the
Pareto frontier will not be equispaced or evenly distributed [28,29].

To overcome these disadvantages [30], proposed the normal
boundary intersection method (NBI), showing that the Pareto sur-
face will be evenly distributed independent of the relative scales of
the objective functions. So, following the aforementioned discus-
sion, this article will present a two-folded approach to coupling the
NBI method with MSE  objective functions.

This paper is organized as follows: Section 2 presents the
main characteristics of normal boundary intersection method,
discussing the concepts of utopia line, payoff matrix and anchor-
age points. Section 3 presents the NBI-MSE method; Section 4
presents a numerical application to illustrate the adequacy of the
work’s proposal; and also the confirmation runs that were carried
out, demonstrating the mathematical results can be confirmed in
practice. Section 5 presents the results and discussion.

2. Normal boundary intersection (NBI)

The NBI method shown in Fig. 1 is an optimization routine devel-
oped to find a uniformly spread Pareto-optimal solutions for a
general non-linear multiobjective problem [29,30].

The first step in the NBI method establishes the payoff matrix ˚,
based on the calculation of the individual minima of each objective
function. The solution that minimizes the i-th objective function
fi(x) can be represented as f ∗

i
(x∗

i
). When the individual optima x∗

i
is

replaced in the remaining objective functions, fi(x∗
i
) is obtained. In
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