

Available online at www.sciencedirect.com

Reliability Engineering and System Safety 90 (2005) 91-98

www.elsevier.com/locate/ress

Semi-parametric proportional intensity models robustness for right-censored recurrent failure data

S.T. Jiang, T.L. Landers*, T.R. Rhoads

College of Engineering, University of Oklahoma, 202 West Boyd St., Room 107, Norman, OK 73019, USA

Received 30 June 2004; accepted 24 November 2004 Available online 17 February 2005

Abstract

This paper reports the robustness of the four proportional intensity (PI) models: Prentice–Williams–Peterson-gap time (PWP-GT), PWP-total time (PWP-TT), Andersen–Gill (AG), and Wei–Lin–Weissfeld (WLW), for right-censored recurrent failure event data. The results are beneficial to practitioners in anticipating the more favorable engineering application domains and selecting appropriate PI models. The PWP-GT and AG prove to be models of choice over ranges of sample sizes, shape parameters, and censoring severity. At the smaller sample size (U=60), where there are 30 per class for a two-level covariate, the PWP-GT proves to perform well for moderate right-censoring ($P_c \le 0.8$), where 80% of the units have some censoring, and moderately decreasing, constant, and moderately increasing rates of occurrence of failures (power-law NHPP shape parameter in the range of $0.8 \le \delta \le 1.8$). For the large sample size (U=180), the PWP-GT performs well for severe right-censoring ($0.8 < P_c \le 1.0$), where 100% of the units have some censoring, and moderately decreasing, and moderately decreasing constant, and moderately decreasing, constant, and moderately increasing rates of occurrence of failures (power-law NHPP shape parameter in the range of $0.8 \le \delta \le 2.0$). The AG model proves to outperform the PWP-TT and WLW for stationary processes (HPP) across a wide range of right-censorship ($0.0 \le P_c \le 1.0$) and for sample sizes of 60 or more.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Repairable systems reliability; Right-censoring; Recurrent events; Proportional intensity models; Non-homogeneous Poisson process; Prentice–Williams–Peterson

1. Introduction

Cox [1] proposed the distribution-free (semi-parametric) proportional hazards (PH) model in 1972 to account for covariate effects for single event failures (lifetime data) in a non-repairable system. The scope of this study focuses on recurring failure events in a repairable system. Failure time data on a repairable system are realizations of a stochastic point process, in which the instantaneous rate of occurrence of failures (ROCOF) is $\lambda(t)$ Prentice, Williams, and Peterson (PWP) [2] proposed a semi-parametric approach to model recurrent failure event data from a repairable system using two methods: PWP-GT (gap time) and PWP-TT (total time). Several researchers have subsequently proposed alternate modeling methods by modifying the risk set

(common or event-specific baseline intensity function) and the risk interval (gap time, total time, or counting process). These include the Andersen–Gill (AG) [3] and Wei–Lin– Weissfeld (WLW) [4] models. The Cox-based PI regression models (PWP, AG, and WLW) extend the single-event PH models to deal with recurring events. These Cox-based regression models have been applied in medical studies (biostatistics field), such as recurrent infections in a patient.

Compared to the extensive literature on applications of the Cox-based PI regression models in the biostatistics field, there have been few reported engineering applications. Abundant federal funding received in biostatistics/medical research has advanced the PI models to become well developed and widely referenced. We propose that PI models for medical applications could also apply to recurring failure/repair data in engineering problems. The PWP-GT, PWP-TT, AG, and WLW models are potentially powerful analytical tools for engineering practitioners as they become better recognized and understood. Along these lines, Landers

^{*} Corresponding author. Tel.: +1 405 325 0986; fax: +1 405 325 7508. *E-mail address:* landers@ou.edu (T.L. Landers).

Nomenclature

Acronyms	n	an integer counting successive failure times; a
AG Andersen and Gill model		stratification indicator subscript
CI confidence interval	$P_{\rm c}$	censoring probability
DROCOF decreasing rate of occurrence of failures	T_1, T_2	the beginning and end of an event
HPP homogeneous Poisson process	T_n	random variable for cumulative time of occur-
IROCOF increasing rate of occurrence of failures		rence of the <i>n</i> th failure
i.i.d independent and identically distributed	t_n	cumulative time of occurrence of the <i>n</i> th failure;
LWA Lee, Wei, and Amato model		a realization of T_n
MTTF mean time to failure	U	sample size (number of units)
MAD mean absolute deviation	$Y_i^{(n)}$	an at-risk indicator in the AG model
MSE mean squared error	$\mathbf{Z}(t)$	covariate process up to time t
NHPP non-homogeneous Poisson process	Z	$(k \times 1)$ vector of covariates, $\mathbf{z} = (z_1, z_2, \dots, z_k)'$
PH proportional hazards	$\boldsymbol{\beta}_n$	$(k \times 1)$ vector of stratum-specific regression
PI proportional intensity		coefficients $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_k)$
PWP Prentice, Williams, and Peterson model	δ	shape parameter of a power-law NHPP
PWP-GT Prentice, Williams, and Peterson-gap time	Δ	limit to time zero
model	λ_0	baseline value of λ for power-law NHPP
PWP-TT Prentice, Williams, and Peterson-total time	$\lambda_0(t)$	baseline intensity function
model	$\lambda_{0n}(t)$	stratum-specific baseline intensity function
WLW Wei, Lin, and Weissfeld model	$\lambda(t;\mathbf{z})$	proportional intensity function
Notation	υ	scale parameter of a power-law NHPP
k(t, r) proportional hazard function	v_0	baseline value of v , the scale parameter of a
$h(t, \mathbf{z})$ proportional nazard function		power-law NHPP
$n_0(t)$ baseline nazard function	v_1	alternate value of v , the scale parameter of a
N successive failure count		power-law NHPP
N successive failure count $N(4)$ random variable for the number of failures in	\wedge	denotes an estimator
(0, t] counting process	/	denotes the transpose of a vector
(0,1], a counting process		

and Soroudi [5], Qureshi et al. [6], Vithala [7], and Landers et al. [8] have investigated robustness of the PWP-GT model, where the underlying recurrent failure time data are from a Non-homogeneous Poisson Process (NHPP) with a powerlaw or a log-linear intensity function. These references also report the engineering applications of the PWP-GT model cited in the literature (examples contained in Table 1).

Qureshi et al. [6] performed a robustness study to determine how well the PWP-GT method performed when applied to complete data from a failure process that was actually parametric (NHPP with power-law intensity function). They found that the PWP-GT model performs best for constant and moderately increasing rate of occurrence of failures (IROCOF) and decreasing rate of occurrence of failures (DROCOF) and for larger sample sizes from power-law NHPPs. Specifically, they concluded that for sample sizes of 60 (30 per class) or greater, the PWP-GT method is robust over the range of shape parameters $1.0 \le \delta \le 3.0$, but tends to underestimate β for a DROCOF (e.g. BIAS = -26% at $\delta = 0.5$) and overestimate β for an IROCOF (e.g. BIAS = 19% at δ = 3.0). The true value of coefficient β lies within the 2σ confidence bounds on the estimate $\hat{\beta}$ for $1.0 \le \delta \le 1.4$. Vithala [7] considered the case of log-linear increasing ROCOF,

and concluded the PWP-GT model performs best for moderately increasing ROCOF and for larger sample sizes.

Both Qureshi et al. [6] and Vithala [7] have examined robustness of the PWP-GT model for complete (uncensored) data. However, the phenomenon of censoring is generally present in field data. Wei et al. [4] examined rightcensoring data in a bladder cancer study, where the recurrence times of tumors for each patient were collected. Hu and Lawless [13] conducted a censoring experiment on automobile failure data to develop estimation procedures for measuring covariate effects.

This research has extended prior work to the important case of right-censorship and has examined other semi-parametric PI models (PWP-TT, AG, and WLW). This paper

Engineering applications of proportional intensity models

Table 1

Category	References	
Marine gas turbine engines	Ascher [9]	
Semiconductor industry	Ansell and Phillips [10]	
Electrical industry	Ansell and Phillips [10] Ansell and Phillips [10] Landers et al. [8]	
Pipeline industry		
US army main battle tanks		
Water supply industry	Ansell et al. [11,12]	

Download English Version:

https://daneshyari.com/en/article/10420006

Download Persian Version:

https://daneshyari.com/article/10420006

Daneshyari.com