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a  b  s  t  r  a  c  t

The  minimum  zone  tolerance  is a non  linear  method  to find  a global  solution  to  the  roundness  evaluation
problem.  Metaheuristics  such  as  genetic  algorithms,  ant  colony  systems  and particle  swarm  optimiza-
tion  concurrently  process  a  set  of solution  candidates  (chromosomes,  ants,  particles  etc.)  within  a  given
search-space.  Computation  experiments  carried  out with  an  effective  genetic  algorithm  have shown  that
the optimal  sampling  strategy  providing  sufficient  accuracy  at acceptable  processing  time  represents  a
compromise  between  number  of  sample  points  and  search-space  size.  An  estimate  of the  neighborhood
of  the  centroid  containing  the minimum  zone  center  is  given.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The growing complexity of shapes of manufactured parts
and assembly tasks and the increase of performance demand to
mechanical products requires high-speed inspection. Evaluation of
form errors of machined parts is fundamental in quality inspection
to verify their conformance to the expected tolerances. Perfor-
mance of methods have been reviewed in [1].

Form tolerance is evaluated with reference to a Euclidean geo-
metric feature, i.e. a circle in the case of roundness (also known as
circularity). Roundness is a typical geometric form to be inspected
as well as other typical forms such as straightness, flatness and
cylindricity.

The most used criteria to establish the reference circle are: the
least-squares method (LSQ), the maximum inscribed circle (MIC),
the minimum circumscribed circle (MCC) and the minimum zone
tolerance (MZT).

The use of a particular data fitting method depends on the
required application, e.g. MIC  and MCC  can be used when mating is
involved. The LSQ is one of the methods used by Coordinate Mea-
suring Machines (CMM). It is efficient in computation and can be
used with a large number of measured points, but the roundness
error determined is larger than those determined by other meth-
ods, such as the MZT. Therefore, good parts can be rejected resulting
in an economic loss. The MZT  meets the standard definition of the
roundness error, as reported in ISO 1101 [2].  It determines two
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concentric circles that contain the roundness profile and such that
the difference in radii is the least possible value. Fig. 1 shows two
pairs of concentric circles that include the sample points centered
respectively at c1 and c2 and where �r1 and �r2 are their differ-
ence in radii. Once the MZ  center is found, the minimum zone error
can be considered as the roundness error.

The MZT  is a non linear problem and two approaches have been
proposed in the literature: computational geometry techniques and
solutions of a non linear optimization problem. The first approach
is, in general, very computationally intensive, especially, when the
number of data points is large. One of these methods is based on
the Voronoi diagram [3].  The second approach is based on the mini-
mization of the minimum zone error as a function of the MZ  center,
but the inconvenience is that this function has several local minima.
Some examples are: the Chebyshev approximation [4],  the simplex
search/linear approximation [5,6], the steepest descent algorithm
[7],  the particle swarm optimization (PSO) [8,9], the simulated
annealing (SA) [10], and genetic algorithms (GAs) [11–14].

Xiong [15] develops a general mathematical theory, a model
and an algorithm for different kinds of profiles including roundness
where the linear programming method and exchange algorithm are
used. As limaç on approximation is used to represent the circle, the
optimality of the solution is however not guaranteed.

A strategy based on geometric representation for minimum
zone evaluation of circles and cylinders is proposed by Lai and
Chen [16]. The strategy employs a non-linear transformation to
convert a circle into a line and then uses a straightness evalua-
tion schema to obtain minimum zone deviations for the feature
concerned. This is an approximation strategy to minimum zone
circles.
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Fig. 1. MZ error EMZ. c1 and c2 are possible locations of the centers of the two  con-
centric circles. �r1 and �r2 are the differences in radii. If the minimal difference in
radii  �r2 is the EMZ, c2 is the MZ center.

Wang et al. [17] and Jywe et al. [18] present a generalized non-
linear optimization procedure based on the developed necessary
and sufficient conditions to evaluate roundness error. To meet the
standards, the MZ  reference circles should pass through at least
four points of the sample points. This can occur in two cases: (a)
when three points lie on a circle and one point lies on the other cir-
cle (the 1–3 and the 3–1 criteria); (b) when two points lie on each
of the concentric circles (the 2–2 criterion). In order to verify these
conditions the computation time increases exponentially with the
dataset size. Gadelmawla [19] uses a heuristic approach to dras-
tically reduce the number of sample points used by the min–max
1–3, 3–1 and 2–2 criteria.

Samuel and Shunmugam [20] establish a minimum zone
limaç on based on computational geometry to evaluate roundness
error; with geometric methods, global optima are found by exhaus-
tively checking every local minimum candidate. Moroni and Petro
[1] propose a technique to speed up the exhaustive generation of
solutions (brute force algorithm), which starts with a single point
and increases one sample point at each step in order to generate all
the possible subsets of points, until the tolerance zone of a subset
cover the whole dataset (essential subset).

A mesh based method with starting center on the LSC, where
the convergence depends on the number of mesh cross points, rep-
resenting a compromise between accuracy and speed, is proposed
by Xianqing et al. [21].

The strategy to equally spaced points sampled on the roundness
profile is generally adopted in the literature. Conversely, in pre-
vious works the authors developed a cross-validation method for
small samples to assess the kind of manufacturing signature on the
roundness profile in order to detect critical points such as peaks and
valleys [22,23]. They use a strategy where a next sampling increas-
ing the points near these critical areas of the roundness profile.

In [24], some investigations proved that the increase of the
number of sample points is effective only up to a limit number. Rec-
ommended dataset sizes are given for different data fitting methods
(LSQ, MIC, MCC, MZT) and for three different out-of-roundness
types (oval, 3-lobing and 4-lobing). Similar works are [25,26] in
which substantially the same results are given.

A sampling strategy depends on the optimal number of sample
points and the optimum search-space size for best estimation
accuracy, particularly with datasets that involve thousands of
sample points available by CMM  scanning techniques. In this
paper, the sampling strategy problem tailored for a fast genetic
algorithm to solve the MZT  problem is addressed. To achieve more
general results, the sampling strategy used in this work can be
defined as blind according to the classification in [27]. By sampling
strategy not only the number and location of sample points on
the roundness profile is addressed, but also their use by the data
fitting algorithm [28].

Based on current experience, only few contributions are
available in the literature regarding the sampling parameters,

particularly with genetic algorithms. In [12] the search-space is a
square of fixed 0.2 mm  side, in [14] it is 5% of the circle diameter
and center. In [11], the side is determined by the distance of the
farthest point and the nearest point from the mean center. In [13]
it is the rectangle circumscribed to the sample points. The opti-
mal  selection of the number of sample points and the search-space
represent the main focus of current work.

2. Genetic algorithms for the MZT  problem

To experimentally assess the sampling strategy with meta-
heuristics (such as genetic algorithms, ant colony systems, particle
swarm optimization, and taboo search) a previously optimized
genetic algorithm [14] has been selected. Genetic algorithms con-
stitute a class of implicit parallel search methods especially suited
for solving complex optimization or non-linear problems. They are
easily implemented and powerful being a general-purpose opti-
mization tool. Many possible solutions are processed concurrently
and evolve with inheritable rules, e.g. the elitist or the roulette
wheel selection, so to quickly converge to a solution, which is very
close or coincident to the optimal solution.

Genetic algorithms maintain a population of center candidates
(the individuals), which are the possible solutions of the MZT  prob-
lem. The center candidates are represented by their chromosomes,
which are made of pairs of xi and yi coordinates. Genetic algorithms
operate on the xi and yi coordinates, which represent the inherit-
able properties of the individuals by means of genetic operators. At
each generation the genetic operators are applied to the selected
center candidates from current population in order to create a new
generation. The selection of individuals depends on a fitness func-
tion, which reflects how well a solution fulfills the requirements of
the MZT  problem, e.g. the objective function.

Sharma et al. [29] use a genetic algorithm for MZT  of multiple
form tolerance classes such as straightness, flatness, roundness, and
cylindricity. Because of the small dataset size (up to 100 sample
points), there is no need to optimize the algorithm performance,
by choosing the parameters involved in the computation.

Wen  et al. [30] implement a genetic algorithm in real-code,
with only crossover and reproduction operators applied to the pop-
ulation; thus in this case mutation operators are not used. The
algorithm proposed is robust and effective, but it has only been
applied to small samples.

A fast genetic algorithm with convergence speed greater than
0.1 �m per 30 generations, within a selected stop condition, has
been developed for large manufacturing samples and validated by
certified software in [14]. The authors state that larger datasets
require higher population size and not significantly affect the prob-
ability of crossover within a wide range. They conjecture that
mutation is not a fundamental operator.

Table 1 lists all the parameters with their mechanism and value
used by the data fitting algorithm proposed here. The optimal val-
ues of the genetic operators Ps, Pc and Pm are taken from [14].
The genetic algorithm starts with a population of 70 center can-
didates (Ps), randomly chosen in a search-space Sr(x,y,�i) centered
in Cn defined later in expression (2).  At each generation the center
candidates with their minimum zone reference circles and differ-
ence in radii are simultaneously evaluated for fitness by expression
(1) also introduced later.

3. Problem formulation

The minimum zone error EMZ is the solution of the following
optimization problem [14]:

min [max�i=i×(2�/n), i=1,...,nr(x, y, �i) − min�i=i×(2�/n), i=1,...,nr(x, y, �i)]

subject to (x, y) ∈ Sr(x,y,�i )

(1)
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